期刊文献+

随机缺失机制下因果效应估计方法的比较

The Comparison of Causal Effect Estimation Methods at Missing at Random
下载PDF
导出
摘要 在结局变量有缺失条件下,本文提出四种因果效应的方法:倾向值加权法(PW),改进的倾向值加权法(IPW),广义倾向值加权法(AIPW),回归估计法(REG),给出了其无偏性、一致性的证明.同时证明了AIPW方法的双重稳健性.通过在不同缺失程度下模拟比较,说明了AIPW方法较其它三种方法更为准确、有效.最后利用四种估计方法对美国儿童和青少年福利调查的数据进行了因果效应分析,得出接受药物干预服务的儿童并没有比未接受药物滥用服务的孩子表现出更严重的行为问题. When the dependent variable is missing at random, the paper first proposes the four causal effect es- timation methods: propensity scores weighted method (PW), improved propensity score weighted method (IPW), augmented propensity weighted estimator (AIPW), regression estimator (REG) and proves the unbiasedness and consistency of the four methods. The paper also proves that AIPW method is double robustness. The four methods are compared when the missing ratio is in different level. It is illuminat- ed that AIPW is more precise and more efficient than other methods. Finally, the causal effect of the American academy of child and adolescent welfare survey data is estimated with the four methods and the results are reached that children accept drug intervention service show no more serious behavior problems than the children who don't accept drug abuse services.
作者 韩开山
出处 《应用概率统计》 CSCD 北大核心 2014年第6期607-619,共13页 Chinese Journal of Applied Probability and Statistics
基金 国家自然科学基金(11226165)资助
关键词 倾向值 平均处理效果 广义倾向值加权法 Propensity score, average treatment effect, augmented propensity weighted estimator.
  • 相关文献

参考文献12

  • 1Rubin, D.B., Estimating causal effects of treatments in randomized and nonrandomized studies, Journal of Educational Psychology, 66(5)(1974), 688-701.
  • 2Hahn, J., On the role of the propensity score in efficient semiparametric estimation of average treat- ment effects, Econometrica, 66(2)(1998), 315-331.
  • 3Rosenbaum, P.R. and Rubin, D.B., The central role of the propensity score in observational studies for causal effects, Biometrika, 70(1)(1983), 41- 55.
  • 4Rubin, D.B., Bayesian inference for causal effects: the role of randomization, The Annals of Statistics 6(1)(1978), 34-58.
  • 5Hirano, K. and Imbens, G.W., Estimation of causal effects using propensity score weighting: an ap- plication to data on right heart catheterization, Health Services and Outcomes Research Methodology, 2(3-4)(2001), 259-278.
  • 6Imbens, G.W., Nonparametric estimation of average treatment effects under exogeneity: a review The Review of Economics and Statistics, 86(1)(2004), 4-29.
  • 7Glynn, A.N. and Quinn, K.M., An introduction to the augmented inverse propensity weighted esti- mator, Political Analysis, 18(1)(2010), 36-56.
  • 8Tsiatis, A.A., Semiparametric Theory and Missing Data, New York: Springer, 2006.
  • 9Tsiatis, A.A. and Davidian, M., Comment: demystifying double robustness: a comparison of alter- native strategies for estimating a population mean from incomplete data, Statistical Science, 22(4) (2007), 569 -573.
  • 10McCaffrey, D.F., Ridgeway, G. and Morral, A.R., Propensity score estimation with boosted regression for evaluating causal effects in observational studies, Psychological Methods, 9(4)(2004), 403-425.

二级参考文献9

  • 1Rubin D. Bayesian Inference for Causal Effects: The Role of Random- ization[J]. Annals of Statistics, 1978, 6 (1).
  • 2Hahn J. On the Role of the Propensity Score in Efficient: Semipara- metric Estimation of Average Treatment Effects[J]. Econometrica, 1998, 66(2).
  • 3Rosenbaum P, Rubin D. The Central Role of the Propensity Score in Observational Studies for Causal Effects[J]. Biametrika, 1983, (70).
  • 4Hirano K, Imbens G, Ridder G. Estimation of Causal Effects Using Propensity Score Weighting: An Application of Data on Right Ear Catheterization[J]. Health Services and Outcomes Research Methodol- ogy, 2001, (2).
  • 5Heckman J, Ichimura H, Todd P. Matching as an Econometric Evalua- tion Estimator: Evidence from Evaluating a Job Training Program[J]. Review of Economic Studies, 1997, (64).
  • 6Glynn A, Quinn K. An Introduction to the Augmented Inverse Propen- sity Weighted Estimator[J]. Political Analysis, 2010,( 18 ).
  • 7Friedman J. Greedy Function Approximation: A Gradient Boosting Machine[J]. Annals of Statistics, 2001, 29(5).
  • 8Shenyang G, Mark F. Propensity Score Analysis: Statistical Methods and Applications[M]. California: Sage Publication, 2009.
  • 9Imbens G. Nonparametric Estimation of Average Treatment Effects under Exogeniety: A Review[J]. The Review of Economics and Statis- tics, 2004,86(1).

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部