期刊文献+

GPS/INS组合导航缺星情况下的卡尔曼滤波改进算法 被引量:1

Improved Kalman Filtering Algorithm of GPS/INS Integrated Navigation without GPS Signal
下载PDF
导出
摘要 针对GPS/INS(Global Positioning System/Inertial Navigation System)紧组合导航系统在卫星信号缺失情况下导航精度降低,容积卡尔曼滤波(Cubature Kalman Filter,CKF)应用中存在模型误差和计算误差的问题,提出了适用于该背景下的强跟踪均方根容积卡尔曼滤波(Square-Root CKF)算法。该算法通过人为地相对突出滤波过程中新数据的作用,提高了算法在模型不确定时的鲁棒性;均方根策略保证了协方差阵的正定性和对称性。仿真实验表明,改进的算法能够提高导航精度,在卫星信号缺失情况下其效能发挥地更好,提高了组合导航适应复杂环境的能力。 Aiming at the problems that the navigation accuracy of GPS/INS tightly integrated navigation was lowered under condition of GPS signal invalidation,model error and calculation error existing in the application of CKF,a strong tracking SRCKF was presented under the background.By stressing the function of new data artificially,this al-gorithm improved the robustness when the model was uncertain,and the square-root strategy ensured the positive defi-niteness and symmetry of covariance matrix.Simulation results showed that the improved algorithm could improve the navigation accuracy and had better efficiency under the condition of GPS signal invalidation.
作者 朱立新 孟
出处 《探测与控制学报》 CSCD 北大核心 2014年第6期57-62,共6页 Journal of Detection & Control
基金 安徽省自然科学基金资助(1308085QF99)
关键词 GPS/INS紧组合导航 容积卡尔曼滤波 强跟踪滤波 均方根策略 导航精度 GPS/INS tightly integrated navigation cubature Kalman filter strong tracking filter squareroot navigation accuracy
  • 相关文献

参考文献8

二级参考文献80

  • 1夏佩伦,温洪.纯方位TMA的有偏性分析[J].火力与指挥控制,2002,27(5):21-25. 被引量:15
  • 2Doucet A, Godsill S, Andrieu C. On sequential Monte Carlo sampling methods for Bayesian filtering[J]. Statistics and Computing, 2000 (10) : 197 - 208.
  • 3Doucet A. On sequential simulation-based methods for Bayesian filtering[R]. Technical report CUED/F-INFENG/TR 310, Cambridge University Engineering Department, 1998.
  • 4Mustiere F, Bolic M, Bouchard M. Rao-Blackwellised particle filters: examples of applications[C]//IEEE Canadian Conference on Electrical and Computer Engineering ( CCECE).Ottawa, Canada, 2006.
  • 5Doucet A, Freitas N, Gordon N J. Sequential Monte Carlo in practice[M]. New York : Springer, 2001.
  • 6Freitas N. Rao-blackwellised particle filtering for fault diagnosis[C]// IEEE Aerospace Conference Proceedings, 2002,4 : 1767 - 1772.
  • 7Julier S J, Uhlmann J K. A new extension of the Kalman filter to nonlinear systems[C]//Proc. of AeroSense : The l lth International Symposium on Aerospace/Defence Sensing, Simulation and Controls, SPIE, Orlando, Florida, USA, 1997:182- 193.
  • 8Merwe R, Doucet A, Freitas N, Wan E. The unscented particle filter[R]. Technicalreport CUED/F-INFENG/TR 380, Cambridge University Engineering Department, 2000.
  • 9Morelande M R, Ristic B. Reduced sigma point filtering for partially linear models[C]//ICASSP, 2006 : 37 - 40.
  • 10Mustiere F, Bolic M, Bouchard M. A modified Rao-blackwellised particle filter[C]//IEEE International Conference on Acoustics, Speech and Signal Processing, Toulouse, France, 2006:21 - 24.

共引文献305

同被引文献10

  • 1周星伶.GPS/INS组合导航系统松、紧耦合性能比较[J].航空电子技术,2007,38(4):1-6. 被引量:19
  • 2GREWAL M S, WEILL L R, ANDREWS A P. Global po- sitioning systems, inertial navigation and integration [ M ]. New York: Wiley Interscience, 2007.
  • 3GODHA S, PETOVELLO M G, LACHAPELLE G. Per- formance analysis of MEMS IMU/HSGPS/magnetic sen- sor integrated system in urban Canyons [ C ]//Proceedings of ION GPS-05, Institute of Navigation, Long Beach, 2005 : 1977-1990.
  • 4BOUCHER C, LAHRECH A, NOYER J C. Non-linear fil- tering for land vehicle navigation with GPS outage [ C ]// IEEE International Conference on Systems Man & Cyber- netics, 2004, 2 : 1321-1325.
  • 5GODHA S, CANNON M E. Integration of DGPS with a low cost MEMS-Based Inertial Measurement Unit (IMU) for land vehicle navigation application [ C ]//Proceedings of International Technical Meeting of the Satellite Division of the Institute of Navigation, 2005, 1:13-16.
  • 6GODHA S. Performance evaluation of a low cost DGPSMEMS-based IMU integrated with DGPS for land vehicle navigation application [ C ]//MSc Thesis, Department of Geomatics Engineering, University of Calgary, Canada, 2006, UCGE Report No. 20239.
  • 7PARK S K, SUH Y S. A zero velocity detection algorithm using inertial sensors for pedestrian navigation systems [J]. Sensors, 2010, 10(10) :9163-9178.
  • 8侯绍东,王可东,吴镇.GPS辅助修正惯性导航误差的虚拟卫星算法[J].系统仿真学报,2010,22(A01):50-54. 被引量:3
  • 9高钟毓,王进,董景新,赵长德.惯性测量系统零速修正的几种估计方法[J].中国惯性技术学报,1995,3(2):24-29. 被引量:41
  • 10许刚,黄国荣,彭兴钊,薛冬,高圆.卫星信号失效条件下SINS/GPS不同组合方式的性能比较[J].计算机应用研究,2012,29(10):3888-3890. 被引量:7

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部