期刊文献+

微流体通道循环肿瘤细胞检定系统研究 被引量:1

Research on microfluidic circuit-based verification system for circulating tumor cell
下载PDF
导出
摘要 提出在微流体框架上搭建电阻抗型循环肿瘤细胞检测计数和引入光学元件搭建病变循环肿瘤细胞检测的双重荧光激发传感器系统.前者提出了两种不同结构,在直流电路型中得到细胞体积越大峰值电压越高,并且两者有很好的线性关系,相关系数可以达到0.998,也可以得到细胞体积越大,细胞移位时间越长;在交流电路型中,创新性提出印刷电路板和聚二甲基硅氧烷结合作为衬底的思想,并和商用流式细胞仪的测量结果进行了对比,验证了这种结构的可行性.后者用特定病变肿瘤被荧光标记物标记后,受激光激发出的荧光颜色不同而可以被有效地区分开,并拿商用流式细胞仪结论进行对比,结果吻合.两种传感器都用COMSOL软件进行了理论模拟,便于确定结构参数的同时也能与实验结果对比从而优化结论. An impedance sensor for verifying circulating tumor cells and a dual fluorescence-activated sensor introduced by optic components of detecting pathological circulating tumor ceils were proposed. Two structures were included in the former. One was the direct current of which peak amplitude rose with the increasing cells' volume, having a good linear relationship accordingly, and the correlation coefficient could reach 0. 998. It also got the larger volume, the longer the translocation was. The other was the alternating current with an innovative idea of introducing printed circuit boards and polydimethylsiloxane as a substrate, and compared its results with the commercial flow cytometer's, confirming the feasibility. The latter was that after fluorescent label marking on specific pathological circulating tumor cells, they could distinguish due to different colors in activated fluorescents. Its conclusion reaches agreement with the commercial flow cytometer's. Both sensors are used for theoretical simulation by software COMSOL for the convenience of determining the structural parameters and optimizing the conclusions contrasted by experimental results.
作者 郭劲宏
出处 《中国计量学院学报》 2014年第4期337-343,共7页 Journal of China Jiliang University
关键词 微流体 电阻抗 光微流 双重荧光 循环肿瘤细胞 microfluidics impedance optofluidics dual fluorescent circulating tumor cells
  • 相关文献

参考文献16

  • 1ZIEGLSCHMID V, HOLLMANN C, BOCHER O. Detec- tion of disseminated tumor cells in peripheral blood [J]. Critical Reviewsin Clinical Laboratory Sciences, 2005,42 ( 2 ) : 155-196.
  • 2KAMENTSKY L A, MELAMED M R, DERMAN H. Speetrophotometer : new instrument for ultrarapid cell anal ysis[J]. Science, 1965,150(3696) : 630-631.
  • 3ASGHAR W, WAN Y, ILYAS A, et al. Electrical finger- printing, 3D profilfing and detcction of tumor cells with sol- id-state micropores[J]. Lab Chip, 2012, 12 (13): 2345- 2352.
  • 4SRIDHAR M, XU D, KANG Y, et al. Experimental char- acterization of a metal-oxide-semiconductor field-effect tran- sistor based coulter counter[J]. Applied Physics, 2008,103 (10) :104-701.
  • 5WANG Y N, KANG Y, XU D, et al. On-chip counting the number and percentage of CD4- T lymphocytes[J]. Lab Chip,2008,8(2) ..309-315.
  • 6ZHENG Y, CHEN J, CUI T, et al. Characterization of red blood cell deformability change during blood storage [J]. LabChip,2014,14:577-583.
  • 7CHEN J, LI J, SUN Y. Microfluidic approaches for cancer cell detection, characterization, and separation [J]. Lab Chip, 2012,12 : 1753-1767.
  • 8CHOSH, CHENCH, TSAIFS, etal. Human mamma- lian cell sorting using a highly integrated micro-fabricated fluorescence-activated cell sorter [J]. Lab Chip, 2010, 10 (12) : 1567-1573.
  • 9GODIN J, LO Y H. Two-parameter angular light scatter collection for microfluidic flow cytometer employing color- space-time coding[J]. Applied Physics Letters, 2010,97 (9) : 93-104.
  • 10CHOI H, KIM K B, JEON C S, et al. A label-free DC impedance-based microcytometer for circulating rare canc- er cell counting[J]. Lab Chip,2013,13(5) :970-977.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部