期刊文献+

基于元学习和二进制粒子群的网络故障特征选择算法

A Meta-learning and Binary Particle Swarm Optimization Based Network Fault Feature Selection Algorithm
下载PDF
导出
摘要 为了降低Wrapper模式网络故障特征选择方法分类算法的计算量,文章提出了一种基于元学习和二进制粒子群(ML-BPSO)的特征选择方法;算法在封装的分类训练中采用元学习方法估算分类精度,并利用BPSO在特征空间中进行全局搜索选出最优特征集;在DARPA数据集上的实验可以看出本文方法选取结果与BPSO-SVM相当但是计算量大大降低;实验结果表明文章提出的方法能够显著的降低网络故障特征选择计算量,同时保证了较高的诊断精度和较好的降维效果。 The wrapper network fault feature selection algorithms get large calculation cost,a Meta-learning and binary particle swarm optimization (ML-BPSO) based feature selection algorithm was proposed to solve this problem in this paper.The Meta-learning method was introduced for estimating the classification accuracy wrapped in selected method.On this basis,the BPSO is used for searching the whole feature space to find the best feature subset.The experiment on DARPA datasets shows the proposed method result approximate to BPSO-SVM and the calculation cost reduced expressly.The result shows ML-BPSO reduce the calculation cost while gets good performance on classification accuracy and dimensional decrease.
作者 卫娟 王崇科
出处 《计算机测量与控制》 2015年第1期191-194,共4页 Computer Measurement &Control
基金 河南省高等学校青年骨干教师资助计划(2011GGJS-198) 河南省教育厅科学技术研究重点项目(13A520221)
关键词 元学习 二进制粒子群 支持向量机 特征选择 meta-learning BPSO support vector machine feature selection
  • 相关文献

参考文献14

  • 1Zhu Z, Ong Y, Dash M. Wrapper-filter feature selection algorithm using a memetic framework [J]. IEEE Transactions on Systems, Man, and Cybernetics-Part B: Cybernetics, 2007, 37 (1) : 70 - 76.
  • 2Zhao M Y, Fu C, Ji L P, et al. Feature selection and parameter op- timization for support vector machines: A new approach based on genetic algorithm with feature chromosomes I-J]. Expert Systems with Applications 2011, 38 (5) : 5197 - 5204.
  • 3Kim S, Oommen B. On using prototype reduction scheme to opti- mize kernel-based Fisher discriminant analysis [J]. IEEE Transac- tions on Systems, Man, and Cybernetics-Part B: Cybernetics, 2008, 38 (2): 564-570.
  • 4Kononenko I, Estimating attributes: Analysis and extensions of RELIEF [J]. Machine Learning. 1994, 784: 171-182.
  • 5Zhang L, Meng X R, Wu W J, et al. Network Fault Feature Selec tion Based on Adaptive Immune Clonal Selection Algorithm [A]. 2009 International Joint Conference on Computation Sciences and Optimization [C. Hainan, China: 2009, 969- 973.
  • 6潘泓,李晓兵,金立左,夏良正.一种基于二值粒子群优化和支持向量机的目标检测算法[J].电子与信息学报,2011,33(1):117-121. 被引量:11
  • 7Guyon I, Weston J, Barnhill S, et al. Gene Selection for Cancer Classification Using Support Vector Machines [J]. Machine Learn- ing, 2002, 46 (1/3): 389-422.
  • 8Taciana A F, Gomes Ricardo B C, Prudeneio, et al. Combining me- ta-learning and search techniques to select parameters for support vector machines [J]. Neuroeomputing, 2012, 75 (1) : 3 - 13.
  • 9Munoz M, Kirley M, Halgamuge S. A Meta-learning Prediction Model of Algorithm Performance for Continuous Optimization Prob- lems [A. LNCS [C]. 7491, Springer, Berlin, Heidelberg, 2012, 226-235.
  • 10Guo X, Yang J, Wu C, et al. A novel LS-SVMS hyper-parameter selection based on particle swarm optimization I-J3. Neurocomput- ing, 2008, 71 (16-18): 3211-3215.

二级参考文献12

  • 1Akcay G and Aksoy S. Automatic detection of geospatial objects using multiple hierarchical segmentations[J]. IEEE Transaction on Geoscience and Remote Sensing, 2008, 46(7): 2097-2111.
  • 2Chaudhuri D and Samal A. An automatic bridge detection technique for multispectral images[J]. IEEE Transaction on Geoscience and Remote Sensing, 2008, 46(9): 2720-2727.
  • 3Viola P and Jones M J. Robust real-time face detection[J] International Journal of Computer Vision, 2004, 57(2) :137-154.
  • 4Vilaplana V, Marques F, and Salembier P. Binary partition trees for object detection[J]. IEEE Transaction on Image Processing, 2008, 17(11): 2201-2216.
  • 5Dalal N and Triggs B. Histograms of oriented gradients for human detection[C]. Proc. IEEE International Conference on Conlputer Vision and Pattern Recognition, San Diego, CA, USA, Jun.20 25, 2005: 886-893.
  • 6Agarwal S, Awan A, and Roth D. Learning to detect objects in image via s sparse, part-based representation[J], IEEE Transaction on Pattern Analysis and Machine Intelligence, 2004, 26(11): 1475-1490.
  • 7Lowe D G. Distinctive image features from scale-invariant keypoints[J]. International Journal of Computer Vision, 2004, 60(2): 91-110.
  • 8Kennedy J and Eberhart R C. Particle swarm optimization[C]. Proc. IEEE International Conference on Neutral Networks, Perth, Australia, Nov.27-Dec.1, 1995: 1942-1948.
  • 9Kennedy J and Eberhart R C. A discrete binary version of the particle swarm algorithmiC]. Proceeding of IEEE International Conference on Systems, Man, and Cybernetics, Washington, USA, Oct.12-15, 1997: 4104-4109.
  • 10UIUC Car dataset, website: http://12r.cs.uiuc.edu/-cogcomp /Data/Car/, 2004.

共引文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部