摘要
特征提取和表情分类是表情识别的关键技术。针对传统方法识别率低的缺点,首先,提出了一种基于平均灰度的局部三值模式(MG-LTP)新算法,用于提取表情特征;其次,使用极限学习机(ELM)作为分类器,用于特征分类;最后,将二者结合用于表情识别,并进一步应用于人脸微表情识别中。在JAFFE数据库及CASME人脸微表情数据库进行试验,与传统方法对比,取得了较好的效果。
Feature extraction anti expression elassifieation are the key teehnologies of expression recognition. Considering of the low recognition rate of traditional methods,a new algorithm called mean gray local ternary patterns (MG-LTP) based on mean gray is firstly proposed ill this paper,and MG-LTP is used to extract expression fealure. Then, extreme learni,lg machine( ELM ) is used as a classifier for feature classifieation. Finally, the above two methods are combined for expression recognition,and further for fa- cial micro-expression recognition. Experiments are eompleted on JAFFE database for expression recognition and CASME databases for facial micro-expression recognition. Compared with traditional methods, the method used in this paper achieves better results.
出处
《电视技术》
北大核心
2015年第3期123-126,135,共5页
Video Engineering
关键词
微表情
特征提取
分类识别
局部三值模式
极限学习机
micro-expression
feature extraction
expression reeognition
local ternary patterns
extreme learning machine