期刊文献+

基于MG-LTP与ELM的微表情识别 被引量:2

Micro-expression Recognition Based on MG-LTP and ELM
下载PDF
导出
摘要 特征提取和表情分类是表情识别的关键技术。针对传统方法识别率低的缺点,首先,提出了一种基于平均灰度的局部三值模式(MG-LTP)新算法,用于提取表情特征;其次,使用极限学习机(ELM)作为分类器,用于特征分类;最后,将二者结合用于表情识别,并进一步应用于人脸微表情识别中。在JAFFE数据库及CASME人脸微表情数据库进行试验,与传统方法对比,取得了较好的效果。 Feature extraction anti expression elassifieation are the key teehnologies of expression recognition. Considering of the low recognition rate of traditional methods,a new algorithm called mean gray local ternary patterns (MG-LTP) based on mean gray is firstly proposed ill this paper,and MG-LTP is used to extract expression fealure. Then, extreme learni,lg machine( ELM ) is used as a classifier for feature classifieation. Finally, the above two methods are combined for expression recognition,and further for fa- cial micro-expression recognition. Experiments are eompleted on JAFFE database for expression recognition and CASME databases for facial micro-expression recognition. Compared with traditional methods, the method used in this paper achieves better results.
出处 《电视技术》 北大核心 2015年第3期123-126,135,共5页 Video Engineering
关键词 微表情 特征提取 分类识别 局部三值模式 极限学习机 micro-expression feature extraction expression reeognition local ternary patterns extreme learning machine
  • 相关文献

参考文献15

  • 1EKMAN P. Telling lies:clues to deceit in the marketplace,politics, and marriage revised edition [ M ]. New York:WW Norton & Compa- ny, 2009.
  • 2YAN W J, WANG S J, LIU Y J, et al. For micro-expression recogni- tion : database and suggestions [ J ]. Neurocomputing,2014 ( 1 ) :82-87.
  • 3SHREVE M, BRIZZI J, FELILATYEV S, et al. Automatic expres- sion spotting in videos [ J ]. Image and Vision Computing,2014,32 (8) :476-486.
  • 4PANG S,OZAWA S,KASABOV N. Incremental linear discriminant analysis for classification of data streams[ J]. IEEE Trans. Systems, Man, and Cybernetics ,2005,35 (5) :905-914.
  • 5OJALA T,PIETIKAINEN M, MAENPAA T. Muhiresolution gray- scale and rotation invariant texture classification with local binary pat- terns [ J ]. IEEE Trans. Pattern Analysis and Machine Intelligence, 2002,24(7) :971-987.
  • 6BARTLETT M S,MOVELLAN J R,SEJNOWSKI T J. Face recogni- tion by independent component analysis [ J ]. IEEE Trans. Neural Networks, 2002,13 ( 6 ) : 1450-1464.
  • 7TAN X, TRIGGS B. Enhanced local texture feature sets for face rec- ognition under difficult lighting conditions [ J ]. IEEE Trans. Image Processing ,2010,19(6 ) : 163-165.
  • 8LIU Z, PAN Q, DEZERT J. A new belief-based K-nearest neigh- bor classification method [ J ]. Pattern Recognition, 2013,46 ( 3 ) : 834-844.
  • 9BARAKAT M, DRUAUX F, LEFEBVRE D, et al. Self adaptive growing neural network classifier for faults detection and diagnosis [ J ]. Neurocomputing, 2011 ( 18 ) :3865-3876.
  • 10FUNG G M, MANGASARIAN 0 L. Muhicategory proximal support vector machine classifiers[J]. Machine Learning,2005,59( 1 ) :77-97.

同被引文献2

引证文献2

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部