期刊文献+

云数据中心高能效的虚拟机迁移整合算法研究 被引量:3

Energy-Efficient Virtual Machine Migration and Consolidation Algorithm in Cloud Data Center
下载PDF
导出
摘要 基于多资源能效模型,通过改进CPU双阈值法提出了多资源双阈值法触发虚拟机迁移,并将基于粒子群算法的虚拟机放置算法应用于虚拟机的能效整合。仿真实验结果表明,与传统的启发式算法相比,该算法有效地减少了物理节点的启用数量和虚拟机迁移次数,使系统资源利用率更加均衡。 An energy-efficient virtual machine (VM) migration and consolidation algorithm with multi-resource was proposed. The algorithm was developed based on a multi-resource energy efficiency model. A method of multi-resource utilization double threshold was designed to trigger migration of virtual machine, and the optical particle swarm optimization method was introduced in the consolidation of virtual machine. Compared with traditional heuristic algorithms, the algorithm reduces the number of active physical nodes and the amount of VM's migration effectively, and obtains better energy efficiency in cloud data center.
出处 《电信科学》 北大核心 2015年第1期65-71,共7页 Telecommunications Science
基金 国家发展和改革委员会2012年物联网技术研发及产业化专项基金资助项目(No.ls201301) 国家工业和信息化部2012年物联网发展专项基金资助项目(No.D2013-47) 重庆市教委科学技术研究基金资助项目(No.KJ130514)~~
关键词 云数据中心 能效 虚拟机 迁移整合 cloud data center, energy efficiency, virtual machine, migration and consolidation
  • 相关文献

参考文献14

  • 1Nguyen Q, Nam T, Nguyen T. Epobf: energy efficient allocation of virtual machines in high performance computing cloud. Journal of Science and Technology, 2013, 51 (4B) : 173-182.
  • 2Atefeh K, Saurabh K, Rajkumar B. Energy and carbon-efficient placement of virtual machines in distributed cloud data centers. Proceedings of the 19th International European Conference on Parallel and Distributed Computing, Aachen, Germany, 2013.
  • 3Liu H, Jin H, Xu C, et al. Performance and energy modeling for live migration of virtual machines. Cluster Computing, 2013, 16(2): 249-264.
  • 4Nakku K, Jungwook C, Euiseong S. Energy-credit scheduler: an energy-aware virtual machine scheduler for cloud systems. Future Generation Computer Systems, 2014, 32(1): 128-137.
  • 5Liao X, Jin H, Liu H. Towards a green cluster through dynamic remapping of virtual machines. Future Generation Computer Systems, 2012, 28(2): 469-477.
  • 6Beloglazov A, Abawajy J, Buyya R. Energy-aware resou-e allocation heuristics fur efficient management of data centers for cloud computing. Future Generation Computer Systems, 2012, 28(5): 755 -768.
  • 7Srikantaiah S, Kansal A, Zhao F. Energy aware consolidation for cloud computing. Proceedings of the 2008 Conference on Power Aware Computing and Systems, Berkeley, USA, 2008:1-5.
  • 8Mazzueeo M, Dyaehuk D, Deters R. Maximizing cloud providers' revenues via energy aware alloeation policies. Proceedings of the 3rd International Conference on Cloud Computing, Washington, USA, 2010:131-138.
  • 9Beloglazov A, Buyya R. Optimal online deterministic algorithms and adaptive heuristics for energy and performance efficient dynamic consolidation of virtual machines in cloud data centers. Concurrency and Computation: Praetiee and Experience, 2012, 24(13): 1397-1420.
  • 10Gandhi A, Har-:hol M, Das R, et al. Optimal power allocation in farms. Pruceedings of the llth International Joint Conference on Measurement and Mndeling of Computer Systems, New York, USA, 2009:157-168.

同被引文献13

引证文献3

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部