期刊文献+

基于截断加权基追踪模型的迭代支撑探测算法 被引量:1

ITERATIVE SUPPORT DETECTION ALGORITHMS BASED ON TRUNCATED REWEIGHTED BASIS PURSUIT MODEL
原文传递
导出
摘要 迭代支撑探测算法是基于截断的基追踪(Basis Pursuit,BP)模型的一种l_1最小化信号重构算法,它可以实现信号的快速重构并且所需要的观测值比经典的L1算法以及迭代加权L1算法更少.本文针对非零元具有快速退化分布性质的稀疏信号,提出了一种改进算法一一基于截断的加权BP模型的迭代支撑探测算法.在迭代的过程中,改进的算法探测原信号支撑集中元素的同时调整重构模型的权值,使得重构模型更有利于实现信号的精确重构.根据所考虑的信号的非零元具有快速退化分布性质这样的先验信息,利用阈值法则探测原信号支撑集中的元素.最后通过Matlab数值实验实现了算法,验证了基于截断的加权BP模型的迭代支撑探测算法比迭代加权L1算法需要的观测值更少,并且比迭代加权L1算法以及传统的迭代支撑探测算法需要更少的重构时间就可以实现信号的精确重构. Iterative support detection algorithm(ISD) is an l1 minimization signal reconstruction approach based on truncated basis pursuit(BP) model. Compared to the classical L1 algorithm and the iterative reweighted L1 algorithm, ISD needs fewer measurements and the signal can be recovered quickly. In this paper, we present an improved ISD algorithm based on truncated reweighted BP model for recovering signals with fast decaying distribution of nonzeros from compressive sensing measurements. we introduce the improved ISD algorithm implemented with threshold rule, while values of the weights in reconstruction model are modified during each iteration, aiming to improve the reconstruction model for finding the corrected solution. Numerical experiments show that ISD algorithm based on truncated reweighted BP model needs fewer measurements than iterative reweighted L1 algorithm, and less reconstruction time than both iterative rewcighted L1 algorithm and classical ISD for signal reconstruction exactly.
出处 《计算数学》 CSCD 北大核心 2015年第1期42-56,共15页 Mathematica Numerica Sinica
关键词 压缩感知 信号重构 迭代支撑探测算法 阈值 截断的加权BP模型 Compressive Sensing Signal Reconstruction Iterative Support Detection Threshold Truncated Reweighted BP Model
  • 相关文献

参考文献11

  • 1石光明,刘丹华,高大化,刘哲,林杰,王良君.压缩感知理论及其研究进展[J].电子学报,2009,37(5):1070-1081. 被引量:710
  • 2戴琼海,付长军,季向阳.压缩感知研究[J].计算机学报,2011,34(3):425-434. 被引量:214
  • 3Candes E J, Romberg J and Tao T. Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information[J]. IEEE Trans. Inform. Theory, 2006, 52(2): 489- 509.
  • 4Candes E J and Tao T. Near optimal signal recovery from random projections:Universal encoding strategies?[J]. IEEE Trans. Inform. Theory, 2006, 52(12): 5406-5425.
  • 5Donoho D. Compressed sensing[J]. IEEE Trans. Inform. Theory, 2006, 52(4).
  • 6Chen S S, Donoho D L and Saunders M A. Atomic decomposition by basis pursuit[J]. SIAM Review, 2001, 43(1): 129-159.
  • 7Wang Y and Yin W. Sparse signal reconstruction via iterative support detection[J]. SIAM Journal on Imaging Sciences, 2010, 3(3): 462-491.
  • 8Donoho D, Tsaig Y, Drori I and Starck J C. Sparse solution of underdetermined Systems of linear equations by stagewise orthogonal matching pursuit [J]. IEEE Transactions on Information Theory, 2012, 58.
  • 9Needell D and Tropp J A. CoSaMP: Iterative signal recovery from incomplete and inaccurate samples[J]. Appl. Comput. Harmon. Anal., 2009, 301-329.
  • 10Tropp J and Gilbert A. Signal recovery from partial information via orthogonal matching put- suit[J]. IEEE Trans. Inform. Theory, 2007, 4655-4666.

二级参考文献125

  • 1张春梅,尹忠科,肖明霞.基于冗余字典的信号超完备表示与稀疏分解[J].科学通报,2006,51(6):628-633. 被引量:71
  • 2R Baraniuk.A lecture on compressive sensing[J].IEEE Signal Processing Magazine,2007,24(4):118-121.
  • 3Guangming Shi,Jie Lin,Xuyang Chen,Fei Qi,Danhua Liu and Li Zhang.UWB echo signal detection with ultra low rate sampling based on compressed sensing[J].IEEE Trans.On Circuits and Systems-Ⅱ:Express Briefs,2008,55(4):379-383.
  • 4Cand,S E J.Ridgelets:theory and applications[I)].Stanford.Stanford University.1998.
  • 5E Candès,D L Donoho.Curvelets[R].USA:Department of Statistics,Stanford University.1999.
  • 6E L Pennec,S Mallat.Image compression with geometrical wavelets[A].Proc.of IEEE International Conference on Image Processing,ICIP'2000[C].Vancouver,BC:IEEE Computer Society,2000.1:661-664.
  • 7Do,Minh N,Vetterli,Martin.Contourlets:A new directional multiresolution image representation[A].Conference Record of the Asilomar Conference on Signals,Systems and Computers[C].Pacific Groove,CA,United States:IEEE Computer Society.2002.1:497-501.
  • 8G Peyré.Best Basis compressed sensing[J].Lecture Notes in Ccmputer Science,2007,4485:80-91.
  • 9V Temlyakov.Nonlinear Methods of Approximation[R].IMI Research Reports,Dept of Mathematics,University of South Carolina.2001.01-09.
  • 10S Mallat,Z Zhang.Matching pursuits with time-frequency dictionaries[J].IEEE Trans Signal Process,1993,41(12):3397-3415.

共引文献864

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部