期刊文献+

水和丙酮工质的金属纤维毡蒸气腔热管的传热性能 被引量:2

Thermal performance of vapor chamber heat pipe with metal felt wick of water or acetone working fluid
下载PDF
导出
摘要 通过实验研究了金属纤维毡吸液芯蒸气腔热管的传热特性,测试了在单一热源下,不同热通量、风速以及工质种类时蒸气腔热管的启动性能与均温特性,并使用红外热像仪对蒸气腔热管冷凝端拍摄。实验中蒸气腔热管使用的工质分别为水与丙酮。实验结果表明:金属纤维毡蒸气腔热管的启动时间基本在3000 s左右;蒸气腔热管的蒸发端与冷凝端的等温性能良好,其中水工质的冷热端最小温差为1.35℃,因此使用金属纤维毡吸液芯蒸气腔热管可以避免电子器件的局部高温。 The heat transfer characteristics of the vapor chamber heat pipe with metal fiber felt wick were studied by experiments. Under different conditions, the isothermal characteristics and startup performance of the vapor chamber heat pipe using a single heat source were tested. The variables were heat flux, cooling wind speed and working fluid. The condenser section of the vapor chamber heat pipe was filmed by infrared thermography. The working fluid used in the vapor chamber heat pipe was water or acetone. The vapor chamber heat pipe could startup smoothly from ambient temperature at different heating powers, and startup time was about 3000 s. Both evaporator and condenser sections of the vapor chamber heat pipe had good isothermal performance, and the minimum temperature difference of the heat pipe using water as working fluid was 1.35℃. So electronic devices could avoid local high temperature by using the vapor chamber heat pipe with metal fiber felt wick.
出处 《化工学报》 EI CAS CSCD 北大核心 2015年第2期522-529,共8页 CIESC Journal
关键词 计算流体力学 对流 传热 蒸汽腔热管 金属纤维毡 均温性 CFD convection heat transfer vapor chamber heat pipe metal felt wick temperature uniformity
  • 相关文献

参考文献15

  • 1Sauciua I, Chrysler C Mahajon R. Spreading in the heat sink base: phase change systems or solid metals [J]. IEEE Trans. Compon. Pack. Technol., 2002 (25): 621-628.
  • 2Dunn P D, Reay D A. Heat Pipes [M]. 4th ed. New York: Pergamon Press Ltd., 1994.
  • 3Koito Y, Imura H, Mochizuki M, et al. Theoretical study on heat transfer characteristics of a vapor chamber [J]. Thermal Science and Engineering, 2005, 13 (1): 23-30.
  • 4Koito Y, Imura H, Mochizuki M, et al. Fundamental investigations on heat transfer characteristics of heat sinks with a vapor chamber//Proc. 7th Int. Heat Pipe Symposium [C]. 2003:247-251.
  • 5Lin C Y, Leong K C, Wong Y W, Tan F L. Performance study of fiat plate heat pipe//Proceedings of the International Conference on Energy and Environment [C]. Shanghai, 1995:512-518.
  • 6Prasher R S. A simplified conduction based modeling scheme for design sensitivity study of thermal solution utilizing heat pipe and vapor chamber technology [J]. Journal of Electronic Packaging, 2003 125 (3): 378-385.
  • 7Chen Y S, Chien K H, Wang C C, et al. Investigations of the thermal spreading effects of rectangular conduction plates and vapor chamber [J]. Journal of Electronic Packaging, 2007, 129 (3): 348-355.
  • 8岂兴明,苏俊林,矫津毅.小型平板热管的传热特性[J].吉林大学学报(工学版),2006,36(5):669-672. 被引量:5
  • 9Boukhanouf R, Haddad A, North M T, Buffone C. Experimental investigation of a flat plate heat pipe performance using IR thermal imaging camera [J]. Applied Thermal Engineering, 2006, 26 (17/18): 2148-2156.
  • 10Ogushi T, Murakami M, Masumoto H, et al. Study on newly developed fiat plate type heat pipe heat sink [J]. ASME HTD, 1988, 96:517-521.

二级参考文献30

  • 1桂晓宏,袁修干,宋香娥,徐伟强.太阳能热动力系统单元热管吸热器建模与仿真[J].中国电机工程学报,2006,26(13):103-107. 被引量:11
  • 2Mills D. Advances in solar thermal electricity technology[J]. Solar Energy, 2004, 76(1-3): 19-31.
  • 3Jaffe L D. Test results on parabolic dish concentrators for solar thermal power systems [J]. Solar Energy, 1989, 42(2): 173-187.
  • 4Andraka C E, Rawlinson K S, Moss TA, et al. Solar heat pipe testing of the stirling thermal motors 4-120 stirling engine[C]//31 th Intersociety Energy Conversion Engineering Conference. Washington D. C. : IECEC, 1996: 1295-1300.
  • 5Washom B. Parabolic dish stifling module development and Test results[C]//Proceedings of the 19th Intersociety Energy Conversion Engineering Conference , San Francisco: IECEC, 1984: 1686-1694.
  • 6Thomas M, Peter H, Barry B. Dish-stifling systems: an overview of development and status[J]. Journal of Solar Energy Engineering, 2003, 125(5): 135-151.
  • 7Reinalter W, Ulmer S, Heller P, et al. Detailed performance analysis of a 10kW dish/stirling system [J]. Journal of Solar Energy Engineering, 2008, 130(1): 0110131-0110136.
  • 8Nepveu F, Ferriere A, Bataille F. Thermal model of a dish/stirling systems[J]. Solar Energy, 2009, 83(1): 81-89.
  • 9Moreno J B, Modesto-Beato M A, Andraka C E. Recent progress in heat-pipe solar receivers[C]//36th Intersociety Energy Conversion Engineering Conference. Savannah: IECEC, 2001: 565-572.
  • 10Baturkin V, Andraka C, Zaripov V, et al. Features of fabrication technology and properties of wicks of heatpipe receiver for solar dish/stirling systems[C]// International Solar Energy Conference. Orlando : American Society of Mechanical Engineers, 2005: 679-685.

共引文献14

同被引文献8

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部