期刊文献+

单级SBR厌氧/好氧/缺氧处理中期垃圾渗滤液深度脱氮 被引量:7

Nitrogen removal from medium-age landfill leachate via anaerobic/aerobic/anoxic process in SBR
下载PDF
导出
摘要 为了考察单级SBR处理实际中期垃圾渗滤液深度脱氮的可行性,采用单级SBR在"厌氧/好氧/缺氧"(AOA)运行方式下处理实际中期垃圾渗滤液。试验发现,厌氧/好氧/缺氧交替运行下驯化的微生物能在厌氧段消耗胞内糖原,并将水中部分溶解性有机物以聚羟基脂肪酸酯(PHAs)形式储存;在好氧段微生物消耗胞内PHAs,转化为胞内糖原,氨氧化的同时也伴随着同步硝化反硝化脱氮;好氧段氨氧化结束后贮存的碳源(PHAs和糖原)能为后置缺氧反硝化提供碳源。经长期试验研究,进水COD、NH+4-N、TN浓度分别为6430-9372 mg·L^-1、1025.6-1327 mg·L^-1、1345.7-1853.9 mg·L^-1,出水COD、NH4^+-N、TN浓度能达到525-943 mg·L^-1、1.2-4.2 mg·L^-1、18.9-38.9 mg·L^-1。在未投加外碳源的情况下,SBR法AOA运行方式下能够实现中期垃圾渗滤液的深度脱氮,出水TN〈40 mg·L^-1。其中,好氧段(DO〈1 mg·L^-1)通过同步硝化反硝化去除TN占总去除量的1/3左右;缺氧后置反硝化去除的TN占总去除量的2/3左右。 The feasibility of using a single sequencing batch reactor to remove nitrogen from medium-age landfill leachate was examined, and an anaerobic/aerobic/anoxic process in a SBR without extra carbon source addition was presented. Dissolved organic matter could be taken up partially and stored as polyhydroxyalkanoates(PHAs) in the anaerobic stage by the microorganisms operated in the anaerobic/aerobic/anoxic process, with glycogen consumption. In the aerobic stage, ammonia was oxidized and accompanied by loss of tatal nitrogen(TN) via simultaneous nitrification and denitrification. The stored PHAs and glycogen, remaining at the end of aerobic stage could provide carbon source for anoxic denitrification. In the stable phase, the effluent COD, NH+4-N, and TN were 525—943 mg·L^-1, 1.2—4.2 mg·L^-1 and 18.9—38.9 mg·L^-1 respectively when the influent COD, NH+4-N, and TN were 6430—9372 mg·L^-1, 1025.6—1327 mg·L^-1 and 1345.7—1853.9 mg·L^-1, respectively. Nitrogen removal from medium-age landfill leachate could be realized via the anaerobic/aerobic/anoxic process in a SBR with the effluent of TN less than 40 mg·L^-1. Almost 1/3 of reduced TN was removed via SND, while 2/3 of reduced TN was removed via post-anoxic denitrification.
出处 《化工学报》 EI CAS CSCD 北大核心 2015年第2期746-752,共7页 CIESC Journal
基金 国家高技术研究发展计划项目(2012AA063406)~~
关键词 垃圾渗滤液 SBR 聚糖菌 PHAS 糖原 同步硝化反硝化 后置反硝化 landfill leachate SBR GAOs PHAs glycogen SND post-denitrification
  • 相关文献

参考文献25

  • 1WangBaozhen(王宝贞),WangLin(王琳).TreatmentandDisposal城市固体废物渗滤液处理与处置[M].Beijing:ChemicalIndustryPress,2005.
  • 2Grady C P L, Daigger G T, Lim H C. Rotating Biological Contactor [M]. New York: Marcel Dekker, 1999.
  • 3孙洪伟,王淑莹,王希明,时晓宁,彭永臻.高氨氮垃圾渗滤液SBR法短程深度生物脱氮[J].化工学报,2009,60(7):1806-1811. 被引量:16
  • 4朱如龙,王淑莹,李军,王凯,苗蕾,彭永臻.单级好氧脉冲式SBR处理垃圾渗滤液深度脱氮[J].化工学报,2012,63(10):3262-3268. 被引量:2
  • 5王凯,王淑莹,朱如龙,苗蕾,彭永臻.改进SBR处理垃圾渗滤液深度脱氮的启动与实现[J].东南大学学报(自然科学版),2013,43(2):386-391. 被引量:10
  • 6Coats E R, Mockos A, Loge F J. Post-anoxic denitrification driven by PHA and glycogen within enhanced biological phosphorus removal [J]. Bioresource Technology, 2011,102:1019-1027.
  • 7Winkler M, Coats E R, Brinkman C K. Advancing post-anoxic denitrification for biological nutrient removal [J]. Water Research, 2011, 45:6119-6130.
  • 8Zhang H M, Dong F, Jiang T, Wei Y, Wang T, Yang F L. Aerobic granulation with low strength wastewater at low aeration rate in A/O/A SBR reactor [J]. Enzyme and Microbial Technology, 2011, 49: 215-222.
  • 9Yang Q, Gu S B, Peng Y Z, Wang S Y, Liu X H. Progress in the development of control strategies for the SBR process [J]. CLEAN-Soil, Air, Water, 2010, 38(8): 732-749.
  • 10王亚宜,鲁文敏,杨健,高乃云.基于聚糖菌和聚磷菌竞争的代谢模型及影响因素[J].环境科学学报,2009,29(6):1131-1138. 被引量:11

二级参考文献77

  • 1王少坡,彭永臻,王淑莹,张艳萍.温度和污泥浓度对短程内源反硝化脱氮的影响[J].环境科学与技术,2005,28(4):85-86. 被引量:19
  • 2杨岸明,王淑莹,杨庆,郭建华,李剑峰.以pH和ORP作为脉冲SBR工艺的实时控制参数[J].环境污染治理技术与设备,2006,7(12):32-35. 被引量:11
  • 3郭建华,彭永臻,杨庆,杨岸明.脉冲SBR处理城市污水深度脱氮的工艺特性[J].中国环境科学,2007,27(1):62-66. 被引量:19
  • 4Barnard J L,Steichen M T.2006.Where is biological nutrient removal going on?[J].Water Science and Technology,53(3):155-164.
  • 5Brdjanovic D,Logemann S,van Loosdrecht M C M,et al.1998.Influence of temperature on biological phosphorus removal:Process and molecular ecological studies[J].Water Research,32(4):1035-1048.
  • 6Cech J S,Hartman P.1993.Competition between polyphosphate and polysaccharide accumulating bacteria in enhanced biological phosphate removal systems[J].Water Research,27(7):1219-1225.
  • 7Erdal U G,Erdal Z K,Randall C W.2003.The competition between PAO(phosphorus accumulating organisms)and GAO(glycogen accumulating organisms)in EBPR(enhanced biological phosphorus removal)systems at different temperatures and the effects on system performance[J].Water Science and Technology,47(11):1-8.
  • 8Filipe C D M,Daigger G T,Grady Jr C P L,et al.2001b.Effects of pH on the rates of aerobic metabolism of phosphate accumulating and glycogen-accumulating organisms[J].Water EnvironmentResearch,73(2):213-222.
  • 9Filipe C D M,Daigger G T,Grady Jr C P L.2001a.Stoichiometry and kinetics of acetate uptake under anaerobic conditions by an enriched culture of phosphorus-accumulating organisms at different pHs[J].Biotechnology and Bioengineering.76(1):32-43.
  • 10Fnkase T,Shibata M,Miyaji Y.1985.The role of an anaerobic stage on biological phosphorus removal[J].Water Science and Technology,17(1):68-80.

共引文献51

同被引文献86

引证文献7

二级引证文献39

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部