期刊文献+

深水吊放缆绳受力分析方法研究及有限元模拟 被引量:2

Analysis Method of Force on Suspended Cable in Deep Sea
下载PDF
导出
摘要 目前国内外对于深水安装方面的研究主要集中在水下设备的运动响应,而对于连接水下设备与浮体船之间的安装缆绳的动态响应研究很少。为此,对吊放缆绳划分微分单元,建立缆绳受力分析模型,根据莫里森方程推导出微分单元的水平、垂向以及轴向拉力表达式,基于弯矩平衡理论推导出缆绳的水平偏移表达式,为深水吊放缆绳受力分析提供了一种有效的方法。然后选取荔湾3-1绞车安装法下放420 t管汇的算例,综合考虑环境载荷和缆绳材质等因素,采用有限元软件对吊放缆绳进行强度校核,提取缆绳在不同水深的水平位移和轴向位移,并与数值解进行对比,对比结果验证了理论方法的正确性。 Currently, the deep-sea installation research in China and other countries is mainly concentrated on movement response of underwater equipment, but less on dynamic response of cable installation in connecting underwater equipment and floating boat. In this regard, the suspended cable is divided into differential units to es- tablish the analysis model of force on cables. Based on the Morison Formula, the expressions of horizontal, vertical and axial tension of differential units are worked out. Based on bending moment balance theory, the horizontal mi- gration expression of cable has been worked out, which can serve as an effective method to analyze the force on suspended cable in deep sea. Taking the installation method of Liwan 3 - 1 cable hoist to set down 420 t manifolds as example, considering environmental loads and materials used for cable, finite element software is utilized to verify the strength of suspended cable and work out the horizontal and axial displacements of cable at different water depths. The results are compared with solutions given by numerical simulation, which in the end has proved the va- lidity of the theoretical method.
出处 《石油机械》 2015年第2期55-59,共5页 China Petroleum Machinery
基金 国家科技重大专项"深水水下生产设施制造 测试装备及技术"(2011ZX05027-004)
关键词 缆绳 力学模型 微分单元 强度校核 波浪理论 有限元分析 cable mechanical model differential unit strength verification wave theory finite elementanalysis
  • 相关文献

参考文献9

二级参考文献56

  • 1Jin Z J, Bai G P, Ali Mansoori G. An inroduction to petroleum and natural gas exploration and production research in Cina [J]. Journal of Petroleum Science and Engineering, 2004, 41 : 1-7.
  • 2Beverley F, Ronalds. Applicability range for offshore oil and gas production facilities[J]. Marine Structures, 2005, 18: 251-263.
  • 3Harte A M, Williams D, Grealish F. A coupled temperature-displacement model for predicting the long-term performance of offshore pipeline insulation systems[J]. Journal of Materials Processing Technology, 2004, 155-156: 1242-1246.
  • 4Bruno Castanier, Marvin Rausand. Maintenance optimization for subsea oil pipelines[J]. International Journal of Pressure vessels and piping, 2006, 83(4): 236-243.
  • 5Kingsley E Abhulimen. Model for risk and reliability analysis of complex production systems: Application to FPSO/flow -Riser system[J]. Computer & Chemical Engineering, 2009,33(7):1306-1321.
  • 6Kavanagh W K, Doynov K, Gallagher D, Bai Y. The effect of tube friction on the fatigue life of steel tube umbilical risers-new approaches to evaluating fatigue life using enhanced nonlinear time domain methods[C]. OTC paper 16631. 2004.
  • 7Bai Y, Bai Q. Subsea pipelines and risers[M]. Elsevier Science Ltd. 2005: 477-496.
  • 8Uwe Zerbst, Gundula Stadie-Frohbos,Thomad Plonski, Jonathan Jury. The problem of adequate yield load solutions in the context of proof tests on a damaged subsea umbilical[J]. Engineering Failure Analysis, 2009, 16: 1062-1073.
  • 9Bai, Y, Bai, Q. Subsea Engineering Handbook[M]. Gulf Professional Publishing, 2010: 572-630.
  • 10Roveri, FE, Sagrilo, LVSS, Lima, ECP de, et al.Comparing measured and calculated forces of a manifold deployment in 940 meters water depth[C]// Proc.22nd International Conference on Offshore Mechanics and Arctic Engineering, OMAE2003-37114.

共引文献70

同被引文献11

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部