期刊文献+

碳纳米管/金属Ni/稀土氧化物复合材料用于增强夹层结构的吸波性能 被引量:3

CNTs/Ni/REO COMPOSITES USED TO ENHANCE THE WAVE-ABSORBING PROPERTY OF SANDWICH STRUCTURE
下载PDF
导出
摘要 将碳纳米管、纳米氧化镧、微米金属Ni粉、微米氧化镱分散至环氧树脂,将该环氧树脂混合物填充复合材料夹层结构的夹层,来探究该复合材料结构的吸波性能。利用网络矢量分析仪对该结构进行检测。结果表明,该复合材料结构在吸波分贝和吸波带宽方面都有提升,具有良好的吸波性能。在2.99~18.00GHz频段内,反射分贝出现三次波峰:第一个波峰的吸波带宽(〈-5d B)为2.55GHz,最大值出现在4.86GHz,为-23.78d B。第二个波峰的吸波带宽(〈-5d B)为3.75GHz,最大值出现在10.35GHz,为-21.07d B。第三个波峰吸波带宽(〈-5d B)为5.66GHz,最大值出现在14.04GHz,为-13.65d B。整体的吸波带宽(〈-5d B)达到11.96GHz,占全部测试频率的80%。另外,该复合材料结构对电磁波的损耗比例也有提升。 Study the wave-absorbing property of sandwich structures by dispersing the carbon nanotubes, lanthanum oxide in nanometer scale, Ni powder in micrometer scale and ytterbium oxide in micrometer scale into epoxy and filling the interlayer of glass fiber reinforced composites sandwich structures with the above epoxy mixture. The wave-absorbing property was characterized by using vector network analyzer. The results show that these composites structures have a good performance in wave-absorbing. The reflection ratio(dB) and the wave-absorbing bandwidth are both improved. From 2. 99 to 18.00GHz, there are three wave-absorbing peaks. The bandwidth (〈-5dB) of the first peak is 2.55GHz, the maximum dB is -23.78dB, and it is located at 4. 86GHz. The bandwidth (〈-5dB) of the second peak is 3.75GHz, the maximum dB is -21.07dB, and it is located at 10. 35GHz. The bandwidth (〈-5dB) of the third peak is 5.66GHz, the maximum dB is -13.65dB, and it is located at 14.04GHz. The total wave-absorbing bandwidth (〈-5 dB) reach 11.96 GHz, and it accounts for 80% of all the tested frequency. Besides, the wave loss ratio of the composites structures is improved as well.
出处 《玻璃钢/复合材料》 CAS CSCD 北大核心 2015年第1期18-22,共5页 Fiber Reinforced Plastics/Composites
基金 973课题(2011CB605605) 教育部博士点基金(20122302120033)
关键词 复合材料 夹层结构 吸波性能 composites sandwich structure wave-absorbing property
  • 相关文献

参考文献15

二级参考文献151

共引文献241

同被引文献46

  • 1李铮,蔡晓兰,周蕾,易峰,余明俊.CNTs含量对CNTs/Al5083复合材料力学性能的影响[J].金属热处理,2015,40(1):175-177. 被引量:9
  • 2王璟,张虹,白书欣,陈柯,张长瑞.稀土元素对W型钡铁氧体微波吸收特性的作用[J].功能材料与器件学报,2007,13(4):317-322. 被引量:12
  • 3Choi H J, Min B H, Shin J H,et al. Strengthening in nanostructured 2024 aluminum alloy and its composites containing carbon nano- tubes [ J ]. Composites Part A:Applied Science and Manufacturing, 2011,42(10) :1438 - 1444.
  • 4Yoo S J, Han S H, Kim W J. Strength and strain hardening of alumi- num matrix composites with randomly dispersed nanometer-length fragmented carbon nanotubes [J]. Scripta Materialia, 2013,68 ( 9 ) : 711 -714.
  • 5Morsi K, Esawi A M K, Lanka S, et al. Spark plasma extrusion (SPE) of ball-milled aluminum and carbon nanotube reinforced aluminum composites[J].Composites Part A : Applied Science and Manufacturing, 2010,41 ( 2 ) : 322 - 326.
  • 6Alloui D, Bai S, Cheng H M ,et al. Mechanical and electrical prop- erties of a MWNT/epoxy composite [ J ]. Composite science and Technology,2002,62 : 1993 - 1998.
  • 7Sun Hongqi, Wang Shaobin. Research advances in the synthesis of nanocarbon-based photocatalysts and their application for photocat- alytic conversion of carbon dioxide to hydrocarbon thels [ J ]. Energy Fuels,2013,28( 1 ) :22 -36.
  • 8Lu Shaowei, Xu Weikai, Xiong Xuhai,et al. Preparation, magnetism and microwave adsorption performance of ultrathin Fe3Q/carbon nanotube sandwich buckypaper [J]. Journal of Alloys and Com- pounds,2014,606 : 171 - 176.
  • 9Bradbury C R. Hardness of muhi wall carbon nanotubes reinforced aluminium matrix composites [ J ]. J Alloys Compd, 2014, 585 : 362 - 365.
  • 10Peng T, Chang I. Mechanical alloying of multi-walled carbon nano- tubes reinforced aluminum composites powder [ J ]. Powder Techn, 2014,266:7 - 10.

引证文献3

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部