期刊文献+

低温诱导的番茄NAC1基因表达特征分析(英文) 被引量:1

Analysis on Expression Patterns of NAC1 Gene in Tomato Induced by Low Temperature
下载PDF
导出
摘要 [目的]该研究旨在探索番茄NAC转录因子与抗低温的关系。[方法]以番茄幼苗为试材,采用RT-PCR方法克隆NAC1基因N端保守域,并利用RT-q PCR技术检测该基因在4℃低温l处理下的表达情况。[结果]在番茄根、茎、叶中NAC1基因均能表达,表达量随低温处理时间的变化而发生相应的变化。在番茄的不同器官中NAC1表达水平也有所不同,根中的表达水平整体高于茎和叶片中。[结论]该研究为进一步研究番茄NAC1基因的生物学功能奠定理论基础。 [Objective] This study aimed to explore the relationship between NAC transcription factor and resistance to low temperature in tomato. [Method] Tomato seedlings were used as experimental materials to clone the N-terminal conserved domain of NAC1 gene with RT-PCR and investigate the expression patterns of NACl gene under 4 ℃ with real-time quantitative PCR (RT-qPCR). [Result] NACl gene was expressed in roots, stems and leaves of tomato, but the expression level varied with the change of treatment duration. Moreover, the expression levels of NACl varied among different organs of tomato. The expression level of NACl in roots was much higher than that in stems and leaves. [Conclusion] This study laid a theoretical foundation for further investigation of the biological function of NAC1 gene in tomato.
出处 《Agricultural Science & Technology》 CAS 2015年第1期9-11,34,共4页 农业科学与技术(英文版)
基金 Supported by Beijing Fruit Vegetable Innovation Team of Modern Agriculture Industry Technology System(GCTDZJ2014033055) National Natural Science Foundation of China(31171952) Great Wall Scholar Training Program of Beijing Municipality(CIT&TCD20130323)~~
关键词 番茄 NAC 低温 Tomatoes NAC Low temperature
  • 相关文献

参考文献1

二级参考文献2

共引文献58

同被引文献37

  • 1胡晓媛,李志真,梁一池.优良速生树种光皮桦研究进展[J].福建林业科技,2006,33(2):159-163. 被引量:25
  • 2Guti6rrez RA. Systems biology for enhanced plant ni- trogen nutrition. Science, 2012, 336(6089): 1673-1675.
  • 3Robertson GP, Vitousek PM. Nitrogen in agrictlture: bal- ancing the cost of an essential resource. Annu Rdv Environ Res, 2009, 34: 97-125.
  • 4Xu GH, Fan XR, Miller AJ. Plant nitrogen assimilation and use efficiency. Annu Rev Plant Biol, 2012, 63: 153-182.
  • 5Stitt M, Miiller C, Matt P, Gibon Y, Carillo P, Morcuende R, Scheible WR, Krapp A. Steps towards an integrated view of nitrogen metabolism. J Exp Bot, 2002, 53(370): 959-970.
  • 6Scheible W-R, Morcuende R, Czechowski T, Fritz C, Osuna D, Palacios-Rojas N, Schindelasch D, Thimm O, Udvardi MK, Stitt M. Genome-wide reprogramming of primary and secondary metabolism, protein synthesis, cell- ular growth processes, and the regulatory infrasiructure of Arabidopsis in response to nitrogen. Plant Physiol, 2004, 136(1): 2483-2499.
  • 7Wang RC, Okamoto M, Xing X J, Crawford NM. Micro- array analysis of the nitrate response in Arabidopsis roots and shoots reveals over 1,000 rapidly responding genes and new linkages to glucose, trehalose-6-phosphatb, iron, and sulfate metabolism. Plant Physiol, 2003, 132(2): 556-567.
  • 8Zhang HM, Forde BG. An Arabidopsis MADS box gene that controls nutrient-induced changes in root architecture. Science, 1998, 279(5349): 407-409.
  • 9Ho CH, Lin SH, Hu HC, Tsay YF. CHL1 functions as a nitrate sensor in plants. Cell, 2009, 138(6): 1184-1194.
  • 10Castaings L, Camargo A, Pocholle D, Gaudon V, Texier Y, Boutet-Mercey S, Taconnat L, Renou JP, Daniel-Vedele F, Fernandez E, Meyer C, Krapp A. The nodule inqeption-like protein 7 modulates nitrate sensing and metabolism in Arabidopsis. Plant J, 2009, 57(3): 426-435.

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部