期刊文献+

开放式团队创新研讨主题识别方法及其可视化 被引量:2

Topic Identification and Visualization for Open Team Innovation Argumentation
下载PDF
导出
摘要 当前全球创新方向正在向开放式团队创新转变。开放式团队创新环境中,基于网络的电子研讨成为最基本、最重要的创新活动,及时准确地识别海量电子研讨信息的研讨主题,并通过可视化形象地展示给创新团队成员,对提高开放式团队创新的效率和质量至关重要。针对传统主题挖掘研究中存在的主要问题,提出了开放式团队创新研讨主题识别方法。该方法在文档建模阶段提出并建立了基于团队创新研讨信息本体和研讨树结构的研讨文本语义计算方法;在研讨主题聚类阶段,针对开放式团队创新研讨的短文本特征,运用AntSA算法对研讨文本进行聚类分析;并通过计算聚类结果中每个节点名词的研讨主题标签贡献率,识别每个类别的研讨主题。最后,根据所提出的开放式团队创新研讨主题识别方法,设计和开发了开放式团队创新研讨主题可视化系统,识别并直观显示各研讨主题间的语义关系和结构关系,并对其进行了实验研究。 The global innovation landscape is changing open innovation. In open innovative team, electronic argumentation based on Web is becoming one of the most primary and important innovative activities. It is very important to mine, identify and visualize the argumentation topic of mass argumentation information in the process of open team innovation. These benefit not only mastering the whole team progress and the latest development rapidly and accurately, but also recommending appropriate knowledge and field experts to team members according to their argumentation topics. In order to strike on the main problems of classic text topic mining, an automatic topic identification method is studied and proposed in this paper. A semantic computing method based on argumentation ontology and argumentation tree structure is proposed and built during documentation modeling phase. AntSA algorithm is employed for short-text clustering during topic mining phase. The contribution ratio of the nouns in each category node to argumentation topics is proposed and computed to identify topics of each category. Consequently, the visualization system of topic identification for open team innovation argumentation is designed and development based on the proposed method. The visualization system is able to automatically identify and intuitively exhibit semantic relationships and structural relationships between various argumentation topics. Experiment study of topic identification method for open team innovation argumentation is conducted as well.
出处 《系统管理学报》 CSSCI 北大核心 2015年第1期1-7,21,共8页 Journal of Systems & Management
基金 国家自然科学基金重点项目(70533030) 国家自然科学基金资助项目(71001059) 上海市自然科学基金资助项目(14ZR1413400)
关键词 开放式团队创新 团队创新研讨 主题识别 短文本聚类 可视化 open team innovation team innovation argumentation topic identification short-text clustering visualization
  • 相关文献

参考文献18

  • 1Li Jiatao, Kozhikode R K. Developing new innovation models: Shifts in the innovation landscapes in emerging economies and implications for global RgaD management [J]. Journal of International Management, 2009,15 : 328-339.
  • 2Shen Weiming, Qi Hao, Li Weidong. Computer supported collaborative design: Retrospective and perspective[J]. Computers in Industry, 2008, 59: 855-862.
  • 3Barcellini F, D6tienne F, Burkhardt J-M, et al. A socio-cognitive analysis of online design discussions in an Open Source Software community[J]. Interacting with Computers, 2008, 20(1)= 141 165.
  • 4李欣苗,张朋柱,张兴学.团队创新信息关系的自动识别方法及其应用[J].管理科学学报,2007,10(5):28-39. 被引量:8
  • 5Walaa K G, Kamel M S. Enhancing text clustering performace using semantic similarity [J]. Lecture Notes in Business Information Processing, 2009, 24 (2) : 325-335.
  • 6Jesus O, Jose I S, del M D Castillo, et al. SyMSS: a syntax-based measure for short-text semantic similarity [J]. Data & Knowledge Engineering, 2011, 70(4) : 390-405.
  • 7李嘉,张朋柱,蒋御柱.群体研讨支持系统中研讨主题的自动可视化聚类研究[J].系统管理学报,2009,18(3):325-331. 被引量:4
  • 8Bittman R M, Gelbard R. Visualization of multi- algorithm clustering for better economic decisions-the case of car pricing[J]. Decision Support Systems, 2009, 47(1): 42-50.
  • 9毛国君.数据挖掘原理与算法[M].北京:清华大学出版社,2007.
  • 10Hasan M J A, Ramakrishnan S. A survey: Hybrid evolutionary algorithms for cluster analysis [J]. Artificial Intelligence Review, 2011, 36 (3) : 179- 204.

二级参考文献72

共引文献102

同被引文献17

引证文献2

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部