期刊文献+

激光等离子体中的自生磁场和质子加速 被引量:7

Self-Magnetic Field and Proton Acceleration in a Laser Plasma Interaction
原文传递
导出
摘要 选用不同类型的等离子体薄靶,用二维particle-in-cell(PIC)粒子模拟方法系统研究了超强激光脉冲与等离子体薄靶相互作用中产生的自生磁场和质子加速行为,结果发现:当功率密度为1020W/cm2的超强激光与等离子体薄靶相互作用时,由于等离子靶面所产生的自生磁场作用使产生的质子分布呈现空间定向发射,发射的方向和高能质子能量与等离子体靶面密切相关,能量越高发散角越小,而质子加速越好。在圆形薄靶中质子最大能量达到41.1 Me V。研究结果对惯性纳米聚变快点火和肿瘤治疗等方面具有重要的应用价值。 By selecting different types of thin plasma targets and applying two-dimensional particle-in-cell(PIC)simulation system, the acceleration behaviour of proton in the self-generated magnetic field induced by ultra intense laser and the thin plasma target interaction are studied. The results show that when the power density of interaction of intense laser is 1020W/cm2, due to the self-generated magnetic field produced plasma target, the proton distribution exhibites space directional emission; the emission direction and the energy of the high energy proton are closely related to the plasma target surface. The higher proton energy, the smaller the divergence angle and the better proton accelerator effect are. In the round thin plasma target, the proton maximum energy reaches 41.1 Me V. This result has important application value for the inertial nano fusion fast ignition and tumour therapy.
出处 《激光与光电子学进展》 CSCD 北大核心 2015年第2期166-171,共6页 Laser & Optoelectronics Progress
基金 国家自然科学基金(11164030 10965008 11465019)
关键词 超快光学 超强激光 平板靶 圆形靶 数值模拟 自生磁场 ultrafast optics ultra intense laser slab target circular target numerical simulation self-generated magnetic field
  • 相关文献

参考文献18

二级参考文献130

共引文献37

同被引文献60

  • 1王兴涛,印定军,帅斌,李儒新,徐至展.应用全反射二阶自相关仪测量超短脉冲脉宽[J].中国激光,2004,31(8):1018-1020. 被引量:11
  • 2杜建新,楼祺洪,薛冬,周军,孔令峰,董景星,魏运荣,任铁未,朱永元.PPLT倍频宽线宽掺镱双包层光纤放大激光[J].光子学报,2006,35(1):5-8. 被引量:3
  • 3淦元柳,徐世录.美国直升机载红外干扰系统的现状与发展[J].激光与红外,2006,36(1):7-10. 被引量:7
  • 4范晋祥.美国弹道导弹防御系统的红外系统与技术的发展[J].红外与激光工程,2006,35(5):536-540. 被引量:40
  • 5Qiu S R, Wolfe J E, Monterrosa A M, et al. Searching for optimal mitigation geometries for laser-resistant multilayer high-reflector coatings[J]. Applied Optics, 2011, 50(9): C373-C381.
  • 6Maywar D N, Kelly J H, Waxer L J, et al. OMEGA EP high-energy petawatt laser: progress and prospects[C]. Journal of Physics: Conference Series, 2008, 112(3): 032007.
  • 7Strickland D, Mourou G. Compression of amplified chirped optical pulses[J]. Optics Communications, 1985, 56(3): 219-221.
  • 8Maine P, Strickland D, Bado P, et al. Generation of ultrahigh peak power pulses by chirped pulse amplification[J]. IEEE Journal of Quantum Electronics, 1988, 24(2): 398-403.
  • 9Liu H, Gao C, Tao J, et al. Compact tunable high power picosecond source based on Yb-doped fiber amplification of gain switch laser diode[J]. Optics Express, 2008, 16(11): 7888-7893.
  • 10Galvanauskas A, Blixt P, Tellefsen J A, et al. Hybrid diode-laser fiber-amplifier source of high-energy ultrashort pulses[J]. Optics Letters, 1994, 19(14): 1043-1045.

引证文献7

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部