期刊文献+

超磁致伸缩泵悬臂梁阀流固耦合特性分析 被引量:1

Fluid-solid Coupling Analysis of Cantilever Valve in GMM-based Hydraulic Pump
下载PDF
导出
摘要 提出了一种采用悬臂梁式吸排油阀的超磁致伸缩液压泵结构,针对泵用悬臂梁阀工作时的流固耦合特性,基于单自由度振动理论与流固耦合作用下阀片振动参数等效计算原则,对超磁致伸缩泵悬臂梁被动阀进行了线性化数学建模,并在MATLAB/Simulink环境下进行了仿真研究。为研究其非线性特性,基于流固耦合力学原理,建立了超磁致伸缩泵悬臂梁被动阀流固耦合数值模型,并利用Comsol-CFD对其工作特性进行了数值求解。然后依据求解结果进行了深入分析,得到了阀片主要参数对泵性能的影响规律,为超磁致伸缩泵悬臂梁被动阀的主要结构参数的设计与优化提供相关依据。最后,通过不同厚度悬臂梁阀片在流固耦合作用下开启位移的线性理论结果与非线性数值结果的对比完成了模型验证,实验测试了超磁致伸缩泵的流量特性与阻断压力特性,得到了该泵峰值驱动频率为300Hz左右。 A novel structure of giant magnetostrictive pump (GMP) for the hybrid solid fluid actuator was designed. Aiming to fluid-solid coupling characteristics of cantilever valve in GMM-based pump, based on single degree of freedom vibration theory and equivalent calculation principle to parameters of cantilever valve, a linear model describing kinetic characteristic of cantilever valve was established and simulated. Further, aimimg to the nonlinear characteristic of fluid-solid coupling of cantilever valve, a numerical model with Comsol-CFD was built, accordingly numerical investigation for cantilever valve was performed, thus, the interaction relationship among main parameters of cantilever valve and performance of GMM-based pump was obtained, which provides a reference for parameter design and optimization of cantilever valve in GMM-based pump. Finally, the validity of abovementioned numerical results was validated by comparing the simulation results with the theoretical one.
出处 《中国机械工程》 EI CAS CSCD 北大核心 2015年第3期298-304,共7页 China Mechanical Engineering
基金 国家自然科学基金资助项目(51175243) 江苏省自然科学基金资助项目(BK20131359) 航空科学基金资助项目(20130652011) 南京航空航天大学基本科研业务费资助项目(NS2013046)
关键词 超磁致伸缩材料 流固耦合 等效质量 开启压力 giant magnetostrictive material(GMM) fluid-solid coupling equivalent mass crack-ing pressure
  • 相关文献

参考文献13

  • 1焦裕松,焦宗夏,范开华.航空科学技术学科发展报告(2008-2009)[M].北京:中国科学技术出版社.2009.
  • 2Chaudhuri A, Yoo J H, Wereley N M. Design, Test and Model of a Hybrid Magnetostrictive Hy- draulic Actuator [J]. Smart Materials and Struc- tures, 2009,18(8) 1-21.
  • 3Lhermet N, Claeyssen F, Fabbro H. Electro-fluidic Components Based on Smart Materials for Aircraft Electrohydraulic Actualors [C]//The 9th Interna- tional Conference on New Actuators. Bremen, Ger- many,2004 : 14-16.
  • 4Yoo J H, Sirohi J, Wereley N M. A Magnetor Heological Piezohydraulic Actuator [J]. Journal of Intelligent Material Systems and Structures, 2005, 16(11/12) : 945-953.
  • 5Chapman E G, Herdic S L, Keller C A, et al. Devel- opment of Miniaturezed Piezohydraulic Pumps[J]. Pro- ceedings of the SPIE, 2005, 5762:299-310.
  • 6Kim G W, Wang K W. Switching Sliding Mode Force Tracking Control of Piezoelectric Hydraulic Pump Based Friction Element Actuation Systems for Automotive Trans-missions[J]. Smart Materials and Structures, 2009,18(8) :1-15.
  • 7Chaudhuri A. Self-contained Hybrid Electro-hy- draulic Actuators Using Magnetostrietive and Elee- trostrictive Materials[D]. College Park,MD.. Uni- versity of Maryland, 2008.
  • 8Gerver M J, Goldie J H, Swenbeck J R,et al. Mag netostrietive water pump [J]. Proceedings of the SPIE, 1998,3329: 694-705.
  • 9Mauck L D, Lynch C S. Piezoelectric Hydraulic Pump Development[J]. Journal of Intelligent Ma terial Systems and Structures, 2000, 11 (10) : 758- 764.
  • 10Sirohi J. Piezoelectric Hydraulic Hybrid Actuator for a Potential Smart Rotor Application[D]. Col lege Park,MD: University of Maryland, 2002.

同被引文献4

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部