期刊文献+

一种代表点的近似折半层次聚类算法 被引量:6

An Algorithm for Approximate Binary Hierarchical Clustering Using Representatives
下载PDF
导出
摘要 针对传统的代表点聚类算法对收缩因子的敏感性和聚类数不适应数据的动态变化等问题,综合研究凝聚型层次聚类问题,提出一种代表点的近似折半层次聚类算法——ABHCURE(Approximate Binary Hierarchical Clustering Using Representatives),有效地解决了离群数据点对聚类结果的影响和聚类数的难确定问题.首先,提出单层多簇合并模式来提高算法的执行效率.其次,为了避免选择离群数据成为簇的代表点破坏原始数据分布,引入准噪声机制收集各层的准噪声数据增强算法的鲁棒性.最后,通过动态最小聚类数确定方式实现聚类数需求和确定难度的折衷.实验结果表明,该算法不仅运行时间相对较短,具有灵活的聚类数,还可以得到更高精确的聚类结果. Considering the sensitivity of the shrinkage factor to clustering using representatives, as well as the uncertainty number of clusters with different dataset, the research on hierarchical agglomerative clustering and proposal of an Approximate Binary Hierarchi- cal Clustering Using Representatives ( ABHCURE ) algorithm. It has effectively resolved the impact of outlier-data-points in clustering results and the difficulty in determining the number of clusters. First, using single-layer multi-clusters merge mode to improve the exe- cution efficiency of hierarchical clustering algorithm. Second ,in order to prevent outlier-data-points from becoming cluster' s represent- atives, and destroy the original data distribution, pseudo-noise mechanism is introduced to enhance the robustness of hierarchical cluste- ring algorithm. Third, dynamic minimum number of clusters realize that evaluates the balance between number of clusters need and dif- ficulty of determine. The experiment results show that the ABHCURE algorithm has efficient execution, flexible number of clusters, and higher clustering precision.
出处 《小型微型计算机系统》 CSCD 北大核心 2015年第2期215-219,共5页 Journal of Chinese Computer Systems
基金 国家自然科学基金重点课题项目(61139002)资助
关键词 层次聚类 近似折半 单层多簇 准噪声机制 聚类数 hierarchical clustering approximate binary single-layer multi-clusters pseudo-noise mechanism number of clusters
  • 相关文献

参考文献4

二级参考文献25

  • 1洪志令 ,姜青山 ,董槐林 ,Wang Sheng-Rui .模糊聚类中判别聚类有效性的新指标[J].计算机科学,2004,31(10):121-125. 被引量:15
  • 2诸克军,苏顺华,黎金玲.模糊C-均值中的最优聚类与最佳聚类数[J].系统工程理论与实践,2005,25(3):52-61. 被引量:69
  • 3李洁,高新波,焦李成.基于特征加权的模糊聚类新算法[J].电子学报,2006,34(1):89-92. 被引量:114
  • 4金阳,左万利.一种基于动态近邻选择模型的聚类算法[J].计算机学报,2007,30(5):756-762. 被引量:18
  • 5马晓艳 唐雁.层次聚类算法研究.计算机科学,2008,34(7):34-36.
  • 6KARYPIS G, HAN EUI-HONG, KUMAR V. Chameleon: Hierar- chical clustering algorithm using dynamic modeling[ J]. Computer, 1999, 32(8) : 68 - 75.
  • 7聂承启,喻云峰.聚类分析中Chameleon算法的研究[J].计算机科学,2006,33(8):166-168.
  • 8JIANG SHENG-YI, XU YU-MING. An efficient clustering algorithm [ C]// Proceedings of 2004 International Conference on Machine Learning and Cybernetics. New York: IEEE, 2004:1513 - 1518.
  • 9AYAD H, KAMEL M S. Refined shared nearest neighbors graph for combining muhiple data clustering[ C]// Advances in Intelligent Da- ta Analysis V, LNCS 2810. Berlin: Springer, 2003:307 -318.
  • 10ERTOZ L, STEINBACH M, KUMAR V. A new shared nearest neighbor clustering algorithm and its applications[ EB/OL]. [ 2012 - 01 -10]. www-users, cs. umn. edu/- kumar/.../siam hd snn cluster, pdf.

共引文献1163

同被引文献53

  • 1肖宇,于剑.Gap statistic与K-means算法[J].计算机研究与发展,2007,44(z2):176-180. 被引量:7
  • 2邱保志,沈钧毅.基于网格技术的高精度聚类算法[J].计算机工程,2006,32(3):12-13. 被引量:11
  • 3孙吉贵,刘杰,赵连宇.聚类算法研究[J].软件学报,2008(1):48-61. 被引量:1073
  • 4Jiawei Han, Micheline Kamber, Jian Pei. Data Mining: Concepts and Techniques[M]. 3rd ed. 北京:机械工业出版社,2012.
  • 5谭旁宁,SteinbachM,KumarV.IntroductiontoDataMining[M].北京:人民邮电出版社,2012.
  • 6Sudipto Guha, Rajeev Rastogi, Kyuseok Shim. CURE: An Efficient Clustering Algorithm for Large Databases [M]. [S.I.]: ACM Press, 1998.
  • 7FrancisSH,StephenMK.计算机图形学(0penGL版)[M].3rded.胡事民,译.北京:电子工业出版社,2009.
  • 8Ester M, Kriegel H P, Sander J, et al. A density-based algorithm for discovering clusters in large spatial data- base with noise: proceedings of the 2nd International Conference on Knowledge and Discovery and Data Mining, Portland, January 5-9, 1996[C]. Palo Alto: AAAI Press, 1996.
  • 9Karypis G, Han E H, Kumar V. Chameleon: Hierarchical clustering using dynamic modeling[J]. IEEE Comput- er, 1999(8): 68-75.
  • 10孙华灿,李旭宏,刘艳忠,于世军.容量限制分配的蚁群优化算法[J].东南大学学报(自然科学版),2009,39(1):177-180. 被引量:7

引证文献6

二级引证文献32

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部