期刊文献+

α复合层对Ti-10V-2Fe-3Al合金组织和力学性能的影响(英文) 被引量:2

Effect of α Composite Layer on the Microstructure and Mechanical Properties of Ti-10V-2Fe-3Al Alloy
原文传递
导出
摘要 通过在830℃空气中保温1 h后水冷的热处理工艺,在Ti-10V-2Fe-3Al(Ti1023)钛合金表面形成厚度约为82μm的α富氧复合层。研究了α复合层内显微组织形貌、硬度及元素分布特点及复合α层后对Ti1023合金组织和性能影响。结果表明:α复合层从边缘到基体内部硬度值并非一直减小,而是呈现高-低-高-低-趋于稳定的变化规律。研究表明硬度变化规律与合金元素(尤其V、Fe)及组织形态分布相关。Ti1023合金试样复合α层后表面硬度增加了45%,而屈服强度和抗拉强度下降5%。在拉伸变形过程中,复合α层后试样首先会在垂直于拉伸应力方向的外表面产生裂纹,之后裂纹扩展穿过α层到基体内部直至试样断裂,试样拉伸断口呈现心部韧性断裂和边部脆性断裂特征。拉伸过程中试样内部存在应力诱发β相向α″相的组织转变。 Oxygen enriched a composite layer with 82 μm thickness was formed on the surface of Ti-10V-2Fe-3Al alloy by the heat treatment at 830 ℃ for 1 h in air and water quenching. The effects of a composite layer on the microstructure and mechanical properties of Ti-10V-2Fe-3Al alloy were investigated. The microstructure, the hardness and the elements distribution of a composite layer were studied. The results show that the hardness variation of a composite layer does not always display a decreasing trend from the edge to the matrix, but shows the law of high-low-high to stable trend, which is related with the distribution of elements (especially V and Fe) and microstructure evolution. The surface hardness of Ti-10V-2Fe-3Al alloy with a composite layer increases by 45%; meanwhile, the tensile strength and yield strength decrease by 5% only. Cracks will be generated firstly on the sample surface along the direction perpendicular to the tensile stress in tensile procedure, then expand in a composite layer and cross up to the matrix material. Fracture morphologies show the characters of ductility in matrix zone and brittle fracture in α composite layer zone. Stress induced phase transformation from β phase to α" phase will take place during the tensile deformation.
出处 《稀有金属材料与工程》 SCIE EI CAS CSCD 北大核心 2015年第1期12-17,共6页 Rare Metal Materials and Engineering
基金 National Natural Science Foundation of China(51401171)
关键词 α复合层 力学性能 显微硬度 TI-10V-2FE-3AL合金 α composite layer mechanical property microstructure Ti-10V-2Fe-3AI alloy
  • 相关文献

参考文献15

  • 1Zhou Z B,Fei Y, Lai M J et al. Trans Nonferrous Met Soc China[J]’ 2010,20: 2253.
  • 2Duerig T W, Williams J C, Rosenberg H W et al Beta Titanium Alloys in the 7P5(?5[M]. Warrendale: TMS/AIME, 1983: 19.
  • 3Toshiyuki Akanuma, Hiroaki Matsumoto, Shigeo Sato et al. Script Ma/er[J]t 2012, 67: 21.
  • 4Boyer R R, Kuhlman G W. Metall Trans [J], 1987, 18: 2095.
  • 5Luquiau D, Feaugas X,Clavel M. Mater Sci Eng A[J], 1997, 224:146.
  • 6Heredia S,Fouvry S, Berthel B et al Tribol Inter [J], 2011,44: 1518.
  • 7Weiss I., Semiatin S L. Mater Sci EngA[J]. 1998, 243: 46.
  • 8Bao R Q, Huang X, Cao C X. Trans Nonferrous Met Soc China[J]. 2006, 16 : 274.
  • 9Raghunathan S L, Dashwood R J, Jackson M et al. Mater Scig^[J],2008, 488: 8.
  • 10Jackson M, Jones N G, Dye D et al. Mater Sci Eng A[J]. 2009, 501: 248.

同被引文献16

引证文献2

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部