期刊文献+

湍动流化床过渡段中颗粒速度分布的光纤测量与模拟 被引量:4

Particle Velocity Measurements in Transition Section of Turbulent Fluidized Beds Using Optical Fiber Probe and CFD Simulation
下载PDF
导出
摘要 流化床中颗粒速度的测量一直是个技术上的难点。今针对光纤测量信号提出一种基于互相关原理的时均速度计算方法。考虑到数据分段计算时其可靠性方面的差异,将互相关系数作为第二权重因子引入时均速度计算公式。利用PV6D光纤探针在200 mm直径流化床中测得的原始信号,对比了三种数据处理方法所得的颗粒时均速度,并分别计算其床层截面颗粒净流率,说明提出的方法可靠性更高。据此测量了流化床过渡段不同高度处颗粒时均速度的径向分布,并采用修正的三段曳力模型来描述具有团聚行为的颗粒曳力,进行计算流体力学模拟。测量与模拟结果均表明,从过渡段到稀相段,床中心区的颗粒速度先降低后升高,其径向分布也从陡峭变平缓,然后再次趋于陡峭。颗粒速度分布的上述规律主要由固含率与气速的径向分布共同作用所致。 Measurement of particle velocity in fluidized beds is always technically difficult. A new method based on cross-correlation principle was proposed to calculate time-averaged velocity of particles. Considering the different reliabilities of signal segments, a cross-correlation coefficient was introduced into the formula for calculating time-averaged velocity. A PV6D optical fiber probe was used to obtain original signals in a fluidized bed with 200 mm i.d., and the time-averaged velocities calculated from three different methods were compared. The calculated particle volume flow rates based on different velocity calculating methods indicate that the method proposed in this paper is more reliable. Based on this method, particle time-averaged velocity was measured at different heights in the transition section of a turbulent fluidized bed. A modified three-zone drag law model was used to predict the flow structure of particles with clustering behavior. The experimental and simulation results both indicate that, from the transition section to the dilute section, particle velocity of the core region rises at first and then declines, the radial velocity distribution changes from a steep curve to a flat one, and then becomes steep again. This result depends on both solid concentration distribution and gas velocity distribution.
出处 《高校化学工程学报》 EI CAS CSCD 北大核心 2015年第1期11-19,共9页 Journal of Chemical Engineering of Chinese Universities
基金 国家自然科学基金(U1162125) 中央高校基本科研业务费专项资金(2013QNA4035)
关键词 流化床 颗粒速度 光纤 计算流体力学 fluidized bed particle velocity optical fiber probe computational fluid dynamics (CFD)
  • 相关文献

参考文献23

  • 1Werther J. Measurement techniques in fluidized beds [J]. Powder Technol, 1999, 102(1): 15-36.
  • 2KwaukMoo-son(郭慕孙),LIHong-zhong(李洪钟).Handbook of fluidization(流态化手册)[M].Beijing(北京):Chemical Instry Press(化学工业出版社),2007.
  • 3JINYong(金涌),ZHUJing-xu(祝京旭),WANGZhang-wen(汪展文),et al. Fluidization engineering principlesf流态化工程原理)[M].Beijing(北京):Tsinghua University Press(清华大学出版社),2001:453-457.
  • 4Saadevandi B A, Turton R. The application of computer-based imaging to the measurements of particle velocity and voidage profiles in a fluidized bed [J]. Powder Teehnol, 1998, 98(2): 183-189.
  • 5吴诚,高希,成有为,李希.光纤法颗粒速度测量信号的标定与校正[J].化学反应工程与工艺,2013,29(2):105-110. 被引量:6
  • 6吴诚,高希,成有为,王丽军,李希.湍动流化床过渡段固含率分布特征的实验及数值模拟[J].化工学报,2013,64(3):858-866. 被引量:13
  • 7Gao X, Wu C, Chang Y W, et al. Experimental and numerical investigation of solid behavior in a gas-solid turbulent fluidized bed [J]. Powder Teehuol, 2012, 228: 1-13.
  • 8Gao X, Wang L J, Wu C, et al. Steady-state simulation of core-annulus flow in a circulating fluidized bed (CFB) riser [J]. Chem Eug Sci, 2012, 78: 98-110.
  • 9Aguillon J, Shakourzadeh K, Guigon P. A new method for local solid concentration measurement in circulating fluidized bed [J]. Powder Teehnol, 1996, 86(3): 251-255.
  • 10程长建,黄晋,宋文立,高士秋.光信号互相关法测量循环流化床内颗粒速度的应用研究[J].过程工程学报,2004,4(z1):626-633. 被引量:3

二级参考文献30

  • 1程长建,黄晋,宋文立,高士秋.光信号互相关法测量循环流化床内颗粒速度的应用研究[J].过程工程学报,2004,4(z1):626-633. 被引量:3
  • 2魏飞,陈卫,金涌,俞芷青.循环流化床提升管中固体颗粒停留时间的分布[J].高校化学工程学报,1996,10(3):264-270. 被引量:19
  • 3刘会娥.[D].北京:清华大学,2000:79-82.
  • 4[1]O. Molerus. Heat Transfer in Gas Fluidized Bed. part 1, Powder Technol., 70(1992): 1-14.
  • 5[2]F. Goedecke, R. Nicolai, H. Tanner, L. Reh. Particle Induced Heat Transfer Between Walls and Gas-Solid Fluidized Beds, in A.Avidan (ed.) Proc. Ⅳth Conf. Circulating Fluidized Beds, somerset, PA, 1993, pp. 357-361.
  • 6[3]L.Reh. Fluidized Bed Processing. Chem. Eng. Prog., 67 (2) (1971) 58-63.
  • 7[4]R. Wong, T. Pugsley, F. Berruti. Modeling the Axial Voidage Profile and Flow Structure in Risers of Circulating Fluidized Beds Chemical Engineering Science, Vol.47, No.9-11, pp. 2301-2306.
  • 8[5]G. S. Patience, J. Chaoki, F. Berruti, R. Wong. Scaling Considerations for Circulating Fluidized Bed Risers, Powder Technol.,72(1992) 31-36.
  • 9[6]J. Werther. Measurement Techniques in Fluidized Bed, Powder Technol., 102(1999) 15-36.
  • 10[7]He Y-L,Qin S-Z, Lim C J, Grace J R. Particle Velocity Profiles and Solid Flow Patterns in Spouted Beds, Can. J. Chem. Eng.,72(1994), 561-568.

共引文献37

同被引文献54

引证文献4

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部