期刊文献+

微通道内流动沸腾不稳定性影响因素实验研究 被引量:4

Experimental Study on the Flow Boiling Instability Governing Parameters in Microchannels
下载PDF
导出
摘要 微通道沸腾不稳定性降低设备运行性能及传热特性。设计入口集成种子汽泡发生器的三角形硅基微通道热沉。搭建同步光学可视化测量实验台。研究加热膜长度、质量流量及种子汽泡触发频率对微通道内沸腾不稳定性及传热影响。结果表明:加热膜长度和质量流量作为控制沸腾不稳定性的关键参数,加热膜长度越长或质量流量越低,沸腾起始点和临界热流密度越早发生。单相液体区域,热流密度增大,压降略微降低,温度线性升高。汽液两相区域,热流密度增大,压降迅速增大,温度呈指数式上升。触发种子汽泡作为一种主动式控制技术,沸腾不稳定性得到抑制或消除,换热得到显著增强,是一种值得推广的技术。 Flow boiling instabilities in microchannel can reduce the performance of equipment operation and disturb the heat transfer characteristic. The parallel triangle silicon microchannel heat sink was integrated with seed bubble generators in the microchannel upstream. The simultaneous optical visualization measurement experimental systems were set up. The flow boiling instability and heat transfer under different heater lengthes, mass fluxes and seed bubble frequencies were examined. The results show that, the heater length, heat and mass flux were identified as the key parameters to the boiling instability process. Longer heater length or lower flow rate induces earlier appearance of boiling incipience and critical heat flux. With heat flux increasing, the pressure drop decreases slightly and the temperature increases linearly in the single liquid phase region. However, the pressure drop increases sharply and the temperature increases exponentially in the vapor-liquid two phase flow region. Using triggering the generation of seed bubbles as the active controlling technic, the self-sustained boiling instability can be effectively controlled or fundamentally eliminated. Moreover, the heat transfer could be enhanced markedly. The seed bubble triggered technology is worth to be promoted.
出处 《高校化学工程学报》 EI CAS CSCD 北大核心 2015年第1期90-95,共6页 Journal of Chemical Engineering of Chinese Universities
基金 国家自然科学基金-国际合作交流资助项目(512101064) 国家自然科学基金-广东省联合重点基金资助项目(U1034004)
关键词 微通道 沸腾不稳定性 沸腾曲线 种子汽泡 microchannel boiling instability boiling curve seed bubble
  • 相关文献

参考文献13

  • 1Boure J A, Bergles A E, Tong L S. Review of two-phase flow instability [J]. Nuclear Engineering and Design, 1973, 25(2): 165-192.
  • 2Yuncu H, Y.ildirim P T, Kakac S. Two-phase flow instabilities in a horizontal single boiling channel [J]. Journal of Applied Science Research, 1991, 48(1): 83-104.
  • 3Wang Q, Chen X J, Kakac S, et al. Boiling onset oscillation: a new type of dynamic instability in a forced-convection upflow boiling system [J]. International Journal of Heat and Fluid Flow, 1996, 17(4): 418-423.
  • 4Tadrist L. Review on two-phase flow instabilities in narrow spaces [J]. International Journal of Heat and Fluid Flow, 2007, 28(1): 54-62.
  • 5Yun G, Qiu S Z, Su G H, et al. Theoretical investigations on two-phase flow instability in parallel multichannel system [J]. Annals of Nuelear Energy, 2008, 35(4): 665-676.
  • 6Kandlikar S G. Thermofluid dynamics of boiling in microchannels [J]. Advances in Heat Transfer, 2011, 43:150-156.
  • 7Wu H Y, Cheng P. Boiling instability in parallel silicon microchannels at different heat flux [J]. International Journal of Heat and Mass Transfer, 2004, 47(17-18): 3631-3641.
  • 8Chen T L, Garimella S V. Effects of dissolved air on subcooled flow boiling of a dielectric coolant in a microchannel heat sink [J]. J of Heat Transfer, 2006, 128(4): 398-404.
  • 9Hariechian T, Garimella S V. Effects of channel dimension, heat flux, and mass flux on flow boiling regimes in microchannels [J]. International Journal of Multiphase Flow, 2009, 35(4): 349-362.
  • 10Kuo C J, Peles Y. Flow boiling instabilities in microchannels and means for mitigation by reentrant cavities [J]. Journal of Heat Transfer, 2008, 130(7): 072402.

二级参考文献16

  • 1Choi U S.Enhancing thermal conductivity of fluids with nanoparticle[J].ASME,FED,1995,231(1):99-105.
  • 2Wang Xiang-qi,Mujumdar A S.Heat transfer characteristics of nanofluids:a review[J],International Journal of Thermal Sciences,2007,46(1):1-19.
  • 3Weerapun,Daungthongsuk,Somchai Wongwises.A critical review of convective heat transfer of nanofluids[J],Renewable and Sustainable Energy Reviews,2007,11(5):797-817.
  • 4Das S K,Putra P,Raetzei W.Pool boiling characteristics of nano-fluids[J].Int J Heat Mass Transfer,2003,46(5):851-862.
  • 5Wang G D,Cheng P,Bergles A E.Effects of inlet/outlet configuration on flow boiling instability in parallel microchannels[J],Int J of Heat and Mass Transfer,2008,51(9-10):2267-2281.
  • 6Kandlikar S G.Fundamental issues related to flow boiling in minichannels and microchannels[J].Exp Therm Fluid Sci.2002.26(2-4):389-407.
  • 7Xuan Y M,Roetzel W.Conceptions for heat transfer correlation of nanofluids[J].International Journal of Heat and Mass Transfer,2000,43(16):3701-3707.
  • 8Xuan Y M,Li Q.Heat transfer enhancement of nanofluids[J].International Journal of Heat and Fluid Flow,2000,21(1):58-64.
  • 9In Cheol Bang,Soon Heung Chang.Boiling heat transfer performance and phenomena of Al2O3-water nano-fluids from a plain surface in a pool[J].International Journal of Heat and Mass Transfer,2005,48(12):2407-2419.
  • 10Kedzierski M A,Gong M.Effect of CuO nanolubricant on R134a pool boiling heat transfer[J].International Journal of Refrigeration,2009,32(5):791-799.

共引文献16

同被引文献45

  • 1王艳云,李志安,刘红禹,宿萌,孟令一,吕春红.FLUENT软件对管壳式换热器壳程流体数值模拟方法可行性的验证[J].管道技术与设备,2007(6):46-48. 被引量:13
  • 2Bertrand B,Steve D,Denis W,et al.Slurry hydrogenation in a continuous flow reactor for pharmaceutical application[J].Chimica Oggi,2009,27(6):12-16.
  • 3Horie T,Sumino M,Tanaka T,et al.Photodimerization of maleic anhydride in a microreactor without clogging[J].Organic Process Research&Development,2010,14(2):405-410.
  • 4Zhang T,Zhang X F,Yan X,et al.Synthesis of Fe3O4@ZIF-8 magnetic core–shell microspheres and their potential application in a capillary microreactor[J].Chemical Engineering Journal,2013,228(28):398-404.
  • 5Tang C,Liu M,Xu Y.3-D numerical simulations on flow and mixing behaviors in gas–liquid–solid microchannels[J].AICHE Journal,2013,59(6):1934-1951.
  • 6Dong C,Zhang J,Wang K,et al.Micromixing performance of nanoparticle suspensions in a micro-sieve dispersion reactor[J].Chemical Engineering Journal,2014,253(7):8-15.
  • 7Hartman R L.Managing solids in microreactors for the upstream continuous processing of fine chemicals[J].Organic Process Research&Development,2012,16(5):870-887.
  • 8Browne D L,Deadman B J,Ashe R,et al.Continuous flow processing of slurries:evaluation of an agitated cell reactor[J].Organic Process Research&Development,2011,15(3):693-697.
  • 9Ufer A,Sudhoff D,Mescher A,et al.Suspension catalysis in a liquid–liquid capillary microreactor[J].Chemical Engineering Journal,2011,167(2):468-474.
  • 10Jeffrey R C,Pearson J R.Particle motion in laminar vertical tube flow[J].Journal of Fluid Mechanics,1965,22(4):721-735.

引证文献4

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部