期刊文献+

紫外光照射纳米钛表面生物抗老化的体外研究 被引量:1

The study of biological aging resistance of nano titanium surface treated with UV irradiation in vitro
下载PDF
导出
摘要 目的研究紫外光照射对老化Ti O2纳米管表面理化性质和生物活性的影响。方法两步阳极氧化后的钛片避光保存8周,使其充分老化,紫外光照射48 h;利用场发射扫描电镜(FESEM)、X射线光电子能谱(XPS)、接触角测量仪分析新鲜、老化及紫外光照射组钛片表面微观结构、化学元素和接触角变化;以小鼠骨髓未分化间充质干细胞(MSCs)为细胞株,检测各组钛表面对细胞黏附、增殖及分化的影响,评价各组间生物学差异。结果 FESEM显示紫外光照射未改变钛表面Ti O2纳米管形态,XPS结果显示老化组表面C元素含量显著增高,经紫外光照射后恢复到新鲜组水平,接触角检测显示老化组表面呈疏水性,紫外光照射组表面成超亲水性。体外细胞学实验显示,紫外光照射后钛表面有利于细胞黏附、增殖和分化。结论紫外光照射可去除钛表面碳氢化合物污染,提高表面亲水性,延缓时间因素造成的Ti O2纳米管表面的生物活性降低。 Objective To study the impact of UV radiation on the physicochemical properties and biological activity of aging TiO2 nanotube surface. Methods Titanium plates treated by two-step anodization were stored in dark for eight weeks, sufficient to aging, and irradiated by UV for 48 h. Field emission scanning electron microscopy ( FESEM) , X-ray photoelectron spectroscopy ( XPS) and contact angle measurement were used to analyze the mi-crostructure, chemical elements and the contact angle of the surface of the fresh, aging, UV irradiation groups, respectively. Mouse bone marrow mesenchymal stem cells (MSCs) as cell lines were cultured on the treated titanium plates to determine the effect of modified titanium surface on the cell adhesion, proliferation and differentiation, further to evaluate biological differences among the three groups. Results FESEM displayed UV irradiation did not change the morphology of TiO2 nanotubes on the titanium surface. XPS showed that C elements on the surface of aging group significantly increased after UV irradiation but restored to the level of fresh group by UV irritation. The contact angle analysis showed that the surface of age group was hydrophobic while the surface of UV irradiated group was superhydrophilic. In vitro cell culture showed that UV irritation was conducive to cell adhesion, proliferation and differentiation. Conclusion UV radiation can remove hydrocarbon contamination on surface of titanium, improve the surface hydrophilicity, and delay the bioactive decrease of titanium-based TiO2 nanotube surface by time factors.
出处 《安徽医科大学学报》 CAS 北大核心 2015年第1期37-41,共5页 Acta Universitatis Medicinalis Anhui
基金 安徽省科技厅年度重点科研资助项目(编号:12070403070) 安徽省学术和技术带头人科研活动经费资助(编号:2014H030)
关键词 TiO2 纳米管 阳极氧化 紫外光催化 亲水性 骨髓基质干细胞 TiO2 nanotubes anodization ultraviolet catalysis hydrophilicity bone marrow stromal cells
  • 相关文献

参考文献12

  • 1Sun S J,Yu W Qf Zhang YL,et al.Effects of TiO2 nanotubelayers on RAW 264.7 macrophage behaviour and bone morphoge-netic protein-2 expression[J].Cell Prolif,2013,46(6):685-94.
  • 2Att W,Hori N,Takeuchi M,et al.Time-dependent degradation oftitanium osteoconductivity:an implication of biological aging of im-plant materials[J].Biomaterials,2009,30(29):5352-63.
  • 3Suzuki T,Hori N,Att W,et al.Ultraviolet treatment overcomestime-related degrading bioactivity of titanium[J].Tissue Eng Part A,2009,15(12):3679-88.
  • 4左杨,夏荣,屠姗姗,孙磊,徐基亮,刘春.纯钛种植体表面的纳米改性研究[J].安徽医科大学学报,2013,48(10):1214-1217. 被引量:9
  • 5Brie I C,Soritau 0,Dirzu N,et al.Comparative in vitro study re-garding the biocompatibility of titanium-base composites infiltrated with hydroxyapatite or silicatitanate[J].J Biol Eng,2014,8:14.
  • 6Ryu J J,Park K,Kim H S,et al.Effects of anodized titanium with Arg-Gly-Asp(RGD)peptide immobilized via chemical graft-ing or physical adsorption on bone cell adhesion and differentiation[J].Int J Oral Maxillofac Implants,2013,28(4):963-72.
  • 7顾迎新,赖红昌,张志勇.钛基种植体表面纳米管改性的研究进展[J].口腔材料器械杂志,2012,21(3):145-148. 被引量:5
  • 8Aita H,Hori N,Takeuchi M,et al.The effect of ultraviolet func-tionalization of titanium on integration with bone[J].Biomateri-als,2009,30(6):1015-25.
  • 9Vogler E A.Structure and reactivity of water at biomaterial sur-faces[J].Adv Colloid Interface Sci,1998,74:69-117.
  • 10Wang R,Hashimoto K,Fujishima A.Light-induced amphiphilic suiface[J].Nature,1997,388(6641):431-2.

二级参考文献36

  • 1张剑平,孙召梅,施利毅,贾桂玲,谢晓峰,饶薇薇,朱永法.负载型TiO_2光催化薄膜结构控制及光催化活性[J].无机材料学报,2005,20(5):1243-1249. 被引量:17
  • 2Kaplall F, Lee W, Keaveny T. Form and function of bone. Columbus, Ohio:Simon SP,1994:127 - 185.
  • 3Webster TJ, Siegel RW, Bizlos R. Osteoblast adhesion on nanophase ceramics. Biomaterials, 1999, 20 (13) : 1221 - 1227.
  • 4Gong D, Grimes CA, Varghese OK, et al. Titanium oxide nanotube arrays prepared by anodic oxidation. J Mater Res, 2001, 16(12) : 3331 - 3334.
  • 5Bauer S, Kleber S, Schmuki P. TiO2 nanotubes: Tailoring the geometry in H3 PO4/HF electrolytes. Electrochemistry Communications, 2006, 8(8) : 1321 -1325.
  • 6Albu SP, Chicov A, Macak JM. 250 um long anodic TiO2 nano- tubes with hexagonal selfordering. Phys Stat Sol(RRL) , 2007, 1 (2) : 65 -67.
  • 7Yu WQ, Zhang YL, Jiang XQ, et al. In vitro behavior of MC3T3-El preosteoblast with different annealing temperature titania nanotubes. Oral Dis, 2010, 16(7) : 624 -630.
  • 8Zhu X, Chen J, Scheideler L, et al. Effects of topography and composition of titanium surface oxides on osteoblast responses. Biomaterials, 2004, 25 ( 18 ) : 4087 - 4103.
  • 9Brammer KS, Oh S, Cobb CJ, et al. Improved bone-forming functionality on diameter-controlled TiO2 nanotube surface. Acta Biomaterialia, 2009, 5(8): 3215 -3223.
  • 10Das K, Bose S, Bandyopadhyay A. TiO2 nanotubes on Ti: Influence of nanoseale morphology on bone cell-materials interaction. J Biomed Mater Res A, 2009, 90A( 1 ) : 225 -237.

共引文献12

同被引文献16

引证文献1

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部