期刊文献+

机械牵张诱导肺上皮细胞转化——肺纤维增殖的新机制 被引量:2

New mechanism of pulmonary fibro-proliferafion: the epithelial-mesenchymal transition induced by mechanical stress
原文传递
导出
摘要 背景机械通气是纠正低氧血症的重要治疗手段之一,在急性呼吸窘迫综合征(acute respiratory distress syndrome,ARDS)的支持措施中拥有无可替代的地位。但机械通气治疗在提供有效呼吸支持治疗的同时,还可能导致或进一步加重肺损伤甚至引起肺部纤维化。有研究报道,在ARDS致死原因中,难以控制的肺纤维化占40%~70%。目的就机械性牵拉致肺纤维化的发生机制的最新研究进行综述,以期人们深化对肺纤维化发生机制的认识。内容机械通气对肺组织产生的机械牵拉作用可诱导肺上皮细胞表型转化,这是形成肺纤维化的重要基础。趋向一系列刺激因素均可诱发肺纤维化,包括致敏源、化学毒素和机械牵拉等。而机械牵拉导致的肺纤维化已成为重症监护过程中的重要致死原因之一,这就需要我们的高度重视,在充分了解其发病机制的基础上,研究出有效的预防和干预措施。 Background Mechanical ventilation is one of the most significant therapeutic strategies of mitigating hypoxla, which has become essential for the support of acute respiratory distress syndrome patient. However, it can induce or aggravate ventilator-associated lung injury, even leading to pulmonary fibrosis. It is reported that the mortality of acute respiratory distress syndrome (ARDS) caused by uncontrollable pulmonary fibrosis ranges 40% from 70%. Objective There is a intimate relationship between pulmonary fibro-proliferation and epithelial-mesenchymal transition (EMT) induced by mechanical stress. Content This article reviews the latest advances on the mechanism of pulmonary fibrosis caused by mechanical stretch in order to deepen the understanding of the pathogenesis of pulmonary fibrosis. Trend The causality of pulmonary fibrotic disease is varied, with an array of triggers including allergens, chemicals and mechanical stress. During intensive care unit stay, mechanical stress has become one of the most significant causes of pulmonary fibrosis with high mortality, which requires us to investigate integrating mechanisms of pulmonary fibrosis and intervention of this fibrotic disease.
出处 《国际麻醉学与复苏杂志》 CAS 2015年第2期190-192,I0001,共4页 International Journal of Anesthesiology and Resuscitation
关键词 肺纤维化 局部上皮间质转化 机械牵张 Pulmonary fibrosis Epithelial-mesenchymal transition Mechanical stress
  • 相关文献

参考文献21

  • 1Wynn TA. Integrating mechanisms of pulmonary fibrosis[J]. J Exp Med. 2011. 208(7): 1339-1350.
  • 2Behr J. Idiopathic pulmonary fibrosis: modern guideline -concordant diagnostics and innovative treatment[J]. Dtsch Med W ochenschr 2012. 137(J2): 60104.
  • 3Strieter RM. Mehrad B. New mechanisms of pulmonary fibrosisl J J. Chest. 2009. 136(5): 1364-1370.
  • 4王海燕,高巨,肖建斌.转化生长因子-β信号通路在急性肺损伤纤维化中作用的研究进展[J].国际麻醉学与复苏杂志,2011,32(4):502-506. 被引量:3
  • 5Kolb M, Margetts PJ, Anthony DC, et al. Transient expression of IL -1 beta induces acute lung injury and chronic repair leading to pulmonary fibrosis[J]. J Clin Invest, 2001, 107(12): 1529-1536.
  • 6Zhang Y, Kaminski N. Biomarkers in idiopathic pulmonary fibrosis[J]. Curr Opin Pulm Med, 2012, 18(5): 441446.
  • 7Homer RJ, Elias J A, Lee CG, et al. Modem concepts on the role of inflammation in pulmonary fibrosis[J]. Arch Pathol Lab Med, 2011,135(6): 780-788.
  • 8Guarino M, Tosoni A, Nebuloni M. Direct contribution of epithelium to organ fibrosis: epithelial -mesenchymal transition[J]. Hum Pathol , 2009, 40( 10): 1365-1376.
  • 9Garcia de Herreros A, Baulida J. Cooperation, amplification, and feed-back in epithelial-mesenchymal transition[J]. Biochim Biophys Acta, 2012, 1825(2): 223-228.
  • 10Zeisberg M, Neilson EG. Biomarkers for epithelial-mesenchymal transitions[J], J Clin Invest, 2009, 119(6): 1429-1437.

二级参考文献81

  • 1Liu M, Xu J, Tanswell AK, et al. Inhibition of strain- induced fetal rat lung cell proliferation by gadolinium, a stretch activated channel blocker. J Cell Physiol, 1994, 161 : 501-507.
  • 2Sandur S, Stoller JK. Role of flexible hronchoseopy in immunocompromised patients with lunginfihrates. Chest, 2004, 125 : 712-722.
  • 3Dreyfuss D, Saumon G. Mechanical ventilation-induced pulmonary edema Interaction with previous hmg alterations. Am J Res Crit Care Med, 1995, 151: 1568-1575.
  • 4Slutsky AS. Mechanical ventilation affects local and systemic eytokines in an animal model of acute respiratory distress syndrome. AmJ Res Crit Care Med, 1999, 160: 109-116.
  • 5Malhotra A. Low-tidal-volume ventilation in the acute respiratory distress syndrome. N Engl J Med, 2007, 357: 1113-1120.
  • 6Brower RG, Lanken PN, Maclntyre N, et al. Higher versus lower positive end-expiratory pressures in patients with the acute respiratory distress syndromeJ N Engl J Med, 2004, 351 : 327-336.
  • 7Tremblay L, Valelnza F, Ribeiro SP, et al. Injurious ventilatory strategies increase cytokines and c-fos m-RNA expression in an isolated rat lung model. J Clin Invest, 1997, 99 : 944-962.
  • 8Hasneen NA, Vaday GG, Zucker S. et al, Mechanial stretch induces MMP-2 release and activation in lung endothelium : role of EMMPRIN. Am J Physiol Lung Cell Mol Physiol, 2003, 284: 1341-547.
  • 9Nin N, Penuelas O, de Paula M, et al. Ventilation-induced lung injury in rats is associated with organ injury and systemic inflammation that is attenuated by dexamethasone. Crit Care Med, 2006, 34: 1093~i098.
  • 10Hirani N, Clay M, Sri-Pathmanathan R, et al. A role for acute hypoxia/hyperoxia in the pathogenesis of the acute respiratory distress syndrome an in vivo model. Thorax, 1999, 54: A13.

共引文献11

同被引文献5

引证文献2

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部