期刊文献+

大直径立式锥底罐变壁厚锥底结构设计 被引量:3

Design of wall thickness-variable bottom of large diameter vertical conical-bottom tank
原文传递
导出
摘要 针对目前没有立式锥底罐变壁厚锥底板设计公式和相关规范的现状,根据回转薄壁壳体的应力计算公式,基于无弯矩理论推导了锥底板在液压作用下的厚度设计公式。有限元数值计算结果表明,锥底罐在锥底与罐壁连接处(大角缝)应力集中程度比较严重。类比球罐设计用弧形母线回转薄壳代替原来的直线母线回转薄壳,并推导了其厚度计算公式。以3 200 m3立式锥底罐的设计为例,采用有限元软件ANSYS分别建立了两种锥底结构计算模型,并对计算结果进行对比分析。研究结果表明,弧形板锥底罐罐体应力值和变形量明显小于直板锥底罐,且大角缝处应力集中程度显著降低。此外,进行了不同长度弧形板锥底罐的数值计算,探寻了弧形板长度与应力和变形的关系。 There is no formula and regulations available for design of wall thickness-variable bottom of vertical conicalbottom tank. In this background, based on the stress calculation formula of the rotary thin-walled shell and the no bending moment theory, the design formula of conical-bottom thickness has been deduced under the hydraulic pressure. The finite element numerical calculation results show that the conical-bottom tank has a serious stress concentration at the joint of the conical bottom and the wall(large angle seam). Analogy is made with spherical tank, with curved generatrix rotary thin shell to replace original straight generatrix rotary thin shell, and its thickness calculation formula is deduced. Taking the 3 200 m3 vertical conical-bottom tank as an example, two conical-bottom structure models are established using the finite element software ANSYS, and their calculation results are compared. The results show that the stress and deformation of the arc plate conical-bottom tank are much smaller than that of straight plate conical-bottom tank, and the stress concentration at large angle joint mitigates significantly. Moreover, the numerical calculation is made for arc plate conical-bottom tanks with different plate lengths to identify the relationship between the arc plate length and the stress and deformation.
出处 《油气储运》 CAS 北大核心 2015年第1期90-95,共6页 Oil & Gas Storage and Transportation
基金 中国石油大学(华东)研究生自主创新基金"大型外浮顶储罐浮船两种结构形式对比研究" 13CX06072A
关键词 锥底罐 回转薄壳 弧形板 应力计算 强度校核 conical-bottom tank rotary thin-walled shell arc plate stress calculation intensity calibration
  • 相关文献

参考文献13

  • 1刘扬,赵洪激,董家梅.常压储罐系统可靠性研究[J].石油学报,2002,23(5):96-100. 被引量:7
  • 2DAMATTY A, MARROQUIN E E. Design procedure for stiffened water-filled steel conical tanks[J]. Thin-Walled Structures, 2002,40: 263-282.
  • 3吴龙平,明斐卿,罗丽华,杨忠惠,王旭洲.国内外大型储罐的设计标准对比[J].油气储运,2010,29(12):933-936. 被引量:21
  • 4DAMATTY A A, SWEEDAN A M I. Equivalent mechanical analog for dynamic analysis of pure conical tanks[J]. Thin- Walled Structures, 2006,44:429-440.
  • 5AMR M I, SWEEDAN A A. Simplified procedure for design of liquid-storage combined conical tanks[J]. Thin-Walled Structures, 2009,47: 750-759.
  • 6ANSARY A M, DAMATTY A O. A coupled finite element genetic algorithm for optimum design of stiffened liquid-filled steel conical tanks[J]. Thin-Walled Structures, 2011,49: 482-493.
  • 7惠虎,宋虎堂,吴云龙,李培宁.大型原油储罐的有限元强度分析[J].油气储运,2004,23(12):21-25. 被引量:24
  • 8DAMATTY A A, MARROQUIN E G. Behavior of stiffened liquid-filled conical tanks[J]. Thin-Walled Structures, 2001,39: 353-373.
  • 9中国石油天然气集团公司.GB50341-2003立式圆筒形钢制焊接油罐设计规范[S].北京:中国计划出版社,2003.
  • 10American Petroleum Institute. API Standard 650-2007 Weld Steel Tanks for Oil Storage[S]. Washington D C: API Publishing Services, 2007.

二级参考文献6

  • 1武铜柱.立式圆筒形储罐罐壁强度计算比较及分析[J].石油化工设备技术,2004,25(5):1-6. 被引量:5
  • 2中国石油天然气集团公司.GB50341-2003立式圆筒形钢制焊接油罐设计规范[S].北京:中国计划出版社,2003.
  • 3JIS B8501-1995 焊接的钢制石油贮槽[S].1995.
  • 4BS EN 14015-2004 Specification for the design and manufacture of site built,vertical,cylindrical,flat-bottomed,aboveground,welded,steel tanks for the storage of liquids at ambient temperature and above[S].2004.
  • 5API650-2009 Welded Steel Tanks for Oil Storage[S].2009.
  • 6ANSI/API Std.650 Weld Steel Tanks for Oil Storage,1993.

共引文献60

同被引文献30

引证文献3

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部