期刊文献+

光刻机工件台宏动三自由度建模及自适应神经网络控制 被引量:4

Three degrees of freedom modeling and adaptive neural network control for long-stroke wafer stage
下载PDF
导出
摘要 提出了一种工件台宏动三自由度建模方法以解决光刻机工件台宏动部分在X和Y方向的运动耦合问题并实现它的超精密长行程微米精度的跟踪定位。该建模方法将X方向电机的偏转角度作为被控对象并且在模型中包含了耦合效应对X方向运动的影响。基于此模型提出了一种自适应神经网络控制策略,该策略采用径向基函数(Radial Basis Function,RBF)神经网络对模型参数信息及外界非线性扰动进行实时在线估计,以减小未建模动态、电机齿槽力波动、端部效应、摩擦等扰动对控制系统性能的影响。通过对控制策略的理论推导和稳定性分析,保证了闭环控制系统的收敛性。最后在光刻机工件台上进行了S曲线跟踪定位试验,验证了宏动三自由度建模方法和控制策略的效果。试验结果显示:X和Y方向的位置跟踪误差均小于3μm,X方向电机偏转角度小于1μrad,满足工件台宏动部分跟踪定位精度的要求。 A three degrees of freedom modeling method for a long-stroke wafer stage in lithography was proposed to solve the X-Y coupling problem of the long-stroke wafer stage and to achieve ultraprecision tracking with micron accuracy.In the modeling method,the rotation angle of X linear motor was considered as one of the controlled objects and the coupling effect on the moving in X direction was involved in the model.Then an adaptive neural network control method was presented based on the proposed model.The Radial Basis Function (RBF) neural network was used to estimate the model information and external nonlinear disturbances real-time online and to reduce the influences of unmodeled dynamics,cogging forces,end effect and friction on the control system.With the theoretical derivation and stability analysis,the convergence of the closed-loop system was guaranteed.Finally,the effectiveness of the modeling and the control method were verified by a Scurve tracking experiment on the actual long-stroke wafer stage of the lithography.The experiment results show that the tracking errors of the X and Y linear motors are less than 3 μm and the rotation angle of X motor is less than 1 μrad.The tracking errors meet the design requirements.
出处 《光学精密工程》 EI CAS CSCD 北大核心 2015年第1期132-140,共9页 Optics and Precision Engineering
基金 国家973重点基础研究发展计划资助项目(No.973-10007.07-LB7) 国家重大科技专项资助项目(No.2009ZX02207)
关键词 光刻机 宏动工件台 三自由度建模 自适应神经网络 lithographic system long-stroke wafer stage three degrees of freedom modeling adaptive neural network
  • 相关文献

参考文献32

  • 1TAN K K,LEE T H,HUANG S.Precision Motion Control:Design and Implementation[M].Springer,2008:20-24.
  • 2ALBENDER F,LAMPAERT V,SWEVERS J.The generalized Maxwell-slip model:a novel model for friction simulation and compensation[J].Automatic Control,IEEE Transactions on,2005,50(11):1883-1887.
  • 3LIAO T L,CHIEN T I.An exponentially stable adaptive friction compensator[J].Automatic Control,IEEE Transactions on,2000,45(5):977-980.
  • 4TAN K K,HUANG S N,LEE T H.Robust adaptive numerical compensation for friction and force ripple in permanent-magnet linear motors[J].Magnetics,IEEE Transactions on,2002,38 (1):221-228.
  • 5AHN H S,CHEN Y Q,DOU H.State-periodic adaptive compensation of cogging and coulomb friction in permanent magnet linear motors[C].American Control Conference,Proceedings of the 2005,IEEE,2005:3036-3041.
  • 6WANG C C,TOMIZUKA M.Design of robustly stable disturbance observers based on closed loop consideration using H∞ optimization and its applications to motion control systems[C].American Control Conference,Proceedings of the 2004,IEEE,2004,4:3764-3769.
  • 7SU W T,LIAWC M.Adaptive positioningcontrol for a LPMSM drive based on adapted inverse model and robust disturbance observer[J].Power Electronics,IEEE Transactions on,2006,21(2):505-517.
  • 8XU L,YAO B.Output feedback adaptive robust precision motion control of linear motors[J].Automatica,2001,37(7):1029-1039.
  • 9YAO B,XU L.Adaptive robust motion control of linear motors for precision manufacturing[J].Mechatronics,2002,12(4):595-616.
  • 10PASZKE W,MERRY R,MOLENGRAFT R.Iterative learning control by two-dimensional system theoryapplied to a motion system[C].American Control Conference,IEEE,2007:5484-5489.

二级参考文献37

共引文献31

同被引文献48

  • 1彭东林,刘小康,张兴红,陈锡候.基于谐波修正法的高精度时栅位移传感器[J].仪器仪表学报,2006,27(1):31-33. 被引量:27
  • 2于霖冲,白广忱,焦俊婷,高阳.柔性机构变形动态响应可靠性分析方法[J].宇航学报,2006,27(5):1039-1043. 被引量:11
  • 3李静,徐斌,张英锋,刘巍,刘曼远.车辆电子稳定性程序神经网络PID控制算法[J].吉林大学学报(工学版),2007,37(4):741-744. 被引量:5
  • 4Ozatay E,Unlusoy S Y,Yildirim A M.Enhancement of vehicle handling using four wheel steering control strategy[C]∥SAE Technical Paper,2006-01-0942.
  • 5Yin Guo-dong,Chen Nan,Wang Jin-xiang,et al.Robust control for 4WS vehicles considering a varying tire-road friction coefficient[J].International Journal of Automotive Technology,2010,11(1):33-40.
  • 6Men Jin-lai,Wu Bo-fu,Chen Jie.Comparisons of4WS and Brake-FAS based on IMC for vehicle stability control[J].Journal of Mechanical Science and Technology,2011,25(5):1265-1277.
  • 7Chen Chang-fang,Jia Ying-min.Nonlinear decoupling control of four-wheel-steering vehicles with an observer[J].International Journal of Control,Automation and Systems,2012,10(4):697-702.
  • 8El Hajjaji A,Ciocan A,Hamad D.Four wheel steering control by fuzzy approach[J].Journal of Intelligent and Robotic Systems,2005,41(2/3):141-156.
  • 9Nagai M.Non-linear design approach to four wheel steering system using neural networks[J].Vehicle System Dynamics,1995,24(4/5):329-342.
  • 10Lu Qiang,Wang Hui-yi,Guo Kong-hui.Identification and control of four-wheel-steering vehicles based on neural network[C]∥Proceedings of the IEEE International Vehicle Electronics Conference,Changchun,1999:250-253.

引证文献4

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部