期刊文献+

基于压缩感知归一化关联成像实现目标重构 被引量:19

Object reconstruction by compressive sensing based normalized ghost imaging
下载PDF
导出
摘要 在归一化关联成像的基础上,结合压缩感知理论,提出了基于压缩感知的归一化关联成像方法.该方法首先对物臂的桶探测值进行归一化处理,并由散斑场构造测量矩阵;然后采用正交匹配追踪算法,在低测量次数下优质量地还原出了物体的像.实验中采用灰度图像及二值图像作为成像目标,以峰值信噪比作为衡量标准,分别对传统关联成像,归一化关联成像及压缩感知归一化关联成像的重构效果进行了量化对比.仿真实验结果表明,对于细节较为丰富的灰度图像,压缩感知归一化关联成像的峰值信噪比较传统方法高6 dB左右,比归一化关联成像方法提高了2 dB左右;对于细节较少的二值图像,其峰值信噪比较归一化关联成像法高3.4~4.3 dB,比传统法高5.2~6.5 dB.最后,采用实际电荷耦合元件测得的散斑场构造了测量矩阵,实验结果进一步验证了基于压缩感知的归一化关联成像算法能提高重构质量. According to compressive sensing theory,a compressive sensing based normalized ghost imaging method was proposed.Firstly,the measurements of a bucket detector were normalized,and the measurement matrix was constructed with speckle fields.Then,the object image was reconstructed with a low number of measurements by adopting orthogonal matching pursuit method.Several experiments were performed by using gray-scale images and binary images respectively as the imaging targets and the Peak Signal to Noise Ratio (PSNR) as the yardstick.The reconstruction effects were quantized and compared for traditional Ghost Imaging(GI),Normalized Ghost Imaging (NGI) and Compressive Sensing based Normalized Ghost Imaging (CSNGI) respectively.The simulation results indicate that the PSNR of CSNGI is about 6 dB and 2 dB higher than those of GI and NGI on gray-scale images with more details,and 3.4-4.3 dB and 5.2-6.5 dB higher than those of NGI and GI for binary images with less details,respectively.Finally,the actual speckle field measured by Charge Coupled Devices(CCDs) was used to construct the measurement matrix,and the experiment results also further indicate that the CSNGI improves the reconstruction quality greatly.
出处 《光学精密工程》 EI CAS CSCD 北大核心 2015年第1期288-294,共7页 Optics and Precision Engineering
基金 国家自然科学基金青年科学基金资助项目(No.61204055) 吉林省科技发展计划青年科研基金资助项目(No.20130522188JH) 吉林省科技发展计划自然科学基金资助项目(No.20140101175JC)
关键词 关联成像 压缩感知 峰值信噪比 图像重构 ghost imaging compressive sensing Peak Signal to Noise Ratio(PSNR) image reconstruction
  • 相关文献

参考文献27

  • 1PITTMAN T B,SHIH Y H,STREKALOV D V,et al..Optical imaging by means of two-photon quantum entanglement[J].Physical Review A,1995,52(5):R3429.
  • 2MEYERS R E,DEACON K S.Quantum ghost imaging experiments at ARL[C].SPIE Optical Engineering + Applications.International Society for Optics and Photonics,2010:78150I-78150I-8.
  • 3GATTI A,BRAMBILLA E,BACHE M,et al..Ghost imaging with thermal light:comparing entanglement and classical correlation[J].Physical Review Letters,2004,93(9):093602.
  • 4SHAPIRO J H.Computational ghost imaging[J].Physical Review A,2008,78(6):061802.
  • 5FERRI F,MAGATTI D,LUGIATO L A,et al..Differential ghost imaging[J].Physical Review Letters,2010,104(25):253603.
  • 6SUN B,WELSH S S,EDGAR M P,et al..Normalized ghost imaging[J].Optics Express,2012,20(15):16892-16901.
  • 7CHEN XH,AGAFONOV I N,LUO K H,et al..High-visibility,high-order lensless ghost imaging with thermal light[J].Optics Letters,2010,35(8):1166-1168.
  • 8KATZ O,BROMBERG Y,SILBERBERG Y.Compressive ghost imaging[J].Applied Physics Letters,2009,95(13):131110.
  • 9陆明海,沈夏,韩申生.基于数字微镜器件的压缩感知关联成像研究[J].光学学报,2011,31(7):98-103. 被引量:51
  • 10DU J,GONG W,HAN S.The influence of sparsity property of images on ghost imaging with thermal light[J].Optics Letters,2012,37 (6):1067-1069.

二级参考文献72

  • 1CUELLAR E L, COOPER J, MATHIS J, et al.. Laboratory demonstration of a multiple beam Fourier telescopy imaging system [J]. SPIE, 2008, 7094(G) :1-12.
  • 2董磊 刘欣悦 王建立.傅立叶望远镜理论和实验的发展.光学精密工程,2008,16:24-29.
  • 3BARANIUK R G. Compressive sensing [J]. IEEE Signal Processing Magazine, 2007(7) : 118-124.
  • 4CANDES E J, WAKIN M B. An introduction to compressive sampling [J]. IEEE Signal Processing Magazine, 2008,3 : 21 - 30.
  • 5ROMBERG J. Imaging via compressive sampling [J]. IEEE Signal Processing Magazine, 2008(3): 14-20.
  • 6CANDES E, ROMBERG J. Sparse and incoherence in compressive sampling [J]. Inverse Problems, 2007,23(3) :969-985.
  • 7HOLMES R B, BRINKLEY T. Reconstruction of images of deep space objects using Fourier telescopy [J]. SPIE, 1999,3815:11-22.
  • 8HOGBOM J A. Aperture synthesis with a nonregular distribution of interferometer baselines[J]. Astronomy and Astrophysics Supplement, 1974,15:417-426.
  • 9GULL S F, DANIELL G J. Image reconstruction from incomplete and noisy data [J]. Nature, 1978,272:686-690.
  • 10LANNES A, ANTERRIEU E, BOUYOUCEF K. Fourier interpolation and reconstruction via Shannon-type techniques Ⅰ: regularization principle [J]. Journal of Modern Optics, 1994,41:1537- 1574.

共引文献163

同被引文献133

引证文献19

二级引证文献67

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部