期刊文献+

压缩感知在数字图像水印中的应用分析 被引量:1

Application of compressive sensing in digital image watermark
下载PDF
导出
摘要 压缩感知是信号处理领域的新兴理论,首先阐述压缩感知的基本原则和理论框架,然后对基于正交小波变换下压缩感知的图像重构的效果进行比较分析。实验表明,压缩感知可以很好地运用于图像重构。将压缩感知理论与数字水印技术相结合提出一种基于压缩感知理论的RGB空间彩色图像水印算法。该算法充分利用压缩感知的稀疏性及压缩比的可调节性,控制水印信息的嵌入容量的同时很好地提高了水印嵌入的安全性。实验表明,对于一些常见的攻击,该算法具备很好的鲁棒性。 Compressive sensing is a new theory in the field of signal processing. the basic principles and theoretical framework of compressive sensing are briefly expounded in this paper. The results of the image reconstruction of compressed sensing based on the orthogonal wavelet transform are compared and analyzed. Experiment results show that the compressive sensing can be well applied to image reconstruction. A watermark algorithm for RGB space color images based on compressive sensing theory is proposed in combination with the compressive sensing theory and digital watermark technology. The algorithm makes full use of the sparsity of the compressive sensing and regularity of compression ratio to control the watermark information embedding capacity and improve the security of watermark embedding. The experiment results show that the algorithm has good robustness for some common attacks.
出处 《现代电子技术》 北大核心 2015年第3期62-65,共4页 Modern Electronics Technique
关键词 压缩感知 正交小波变换 彩色图像水印 信号处理 compressive sensing orthogonal wavelet transform color image watermark signal processing
  • 相关文献

参考文献11

  • 1CANDES E.Compressive sampling[C]// Proceedings of the In-ternational Congress of Mathematicians.Madrid,Spain:[s.n.],2006,3:1433-1452.
  • 2CANDES E,ROMBERG J,TAO T.Robust uncertainty princi-ples:Exact signal reconstruction from highly incomplete fre-quency information[J].IEEE Transactions on Information Theo-ry,2006,52(2):489-509.
  • 3CANDfeS E,TAO T.Near optimal signal recovery from randomprojections:universal encoding strategies[J].IEEE Transac-tions on Information Theory,2006,52(12):5406-5425.
  • 4沙威.压缩感知引论[D].香港:香港大学,2008.
  • 5任肖丽.压缩感知理论研究简述[J].中国科技信息,2010(13):45-46. 被引量:1
  • 6朱里,李乔亮,张婷,汪国有.基于结构相似性的图像质量评价方法[J].光电工程,2007,34(11):108-113. 被引量:26
  • 7李民权,朱大龙,明军.基于图像信息相关性的质量评价方法[J].安庆师范学院学报(自然科学版),2007,13(2):21-23. 被引量:2
  • 8PRATTL W K.Digital image processing[M].New York:JohnWiley & Sons,1991:115-137.
  • 9LEDLEY R S,BUAS M,GOLAB T J.Fundamentals of true-color image processing[C]// Proceedings of IEEE International Conference on Pattern Recogittion.USA:IEEE,1990,1:191-195.
  • 10林小平,周石琳,张官亮,闫占凯.基于计算智能的图像拼接系统设计与实现[J].现代电子技术,2013,36(12):49-52. 被引量:3

二级参考文献63

  • 1曾鹏鑫,么健石,陈鹏,徐心和.基于小波变换的图像增强算法[J].东北大学学报(自然科学版),2005,26(6):527-530. 被引量:20
  • 2M.Fornaiser and H.Rauhut iterative thresholding algorithms.preprint.2007.
  • 3Justin Romberg Imaging via Compressive Sampling IEEE Signal Processing Magazine.25(2).March.2008.pp.14-20.
  • 4http://dsp.rice.edu/cs.
  • 5D L Donoho.Y Tsaig I Drori etc Sparse solution of underdetermined linear equations by stagewise orthogonal matching pursuit[R].Technical Report.2006.
  • 6Argyrios Zymnis Stephen Boyd and Emmanuel Gand e s Compressed Sensing with Quantized Measurements[J].IEEE Signal Processing Letters vol.17.No.2.Feb.2010.pp.149-152.
  • 7E Cand e s .Compressive Sampling[A].Proceedings of the International Congress of Mathematicans[C].Madrid,Spain.2006.3.pp.1433-1452.
  • 8E Cand e s J Romberg Terence Tao Robust Uncertainty Principles:Exact Signal Reconstruction form Highly Incomplete Frequency Information[J].IEEE Trans on Information Theory.2006.52(2):pp.489-509.
  • 9E Cand e s and J Romberg Quantitative Robust Uncertainty Principles and Optimally Sparse Decompositions[J].Foundatins of Comput Math.2006.6(2):pp.227-254.
  • 10D L Donoho Compressed sensing[J].IEEE Trans on Information Theory.2006.52(4).pp.1289-1306.

共引文献30

同被引文献10

  • 1曾义,彭真明.一种基于视觉特征的多分辨率快速图像融合方法[J].成都信息工程学院学报,2007,22(4):509-512. 被引量:1
  • 2MALLAT S.A wavelet tour of signal processing[M].[S.l.]:Academic Press,1999.
  • 3CANDES E J,ROMBERG J,TAO T.Robust uncertainty principles:exact signal reconstruction from highly incomplete frequency information[J].IEEE Transactions on Information Theory,2006,52(2):489-509.
  • 4DONOHO D L.Compressed sensing[J].IEEE Transactions on Information Theory,2006,52(4):1289-1306.
  • 5ZOPE-CHAUDHARI S,VENKATACHALAM P.Robust copyright protection of raster images using wavelet based digital watermarking[C]//Proceedings of 2014 IEEE International Conference on Geoscience and Remote Sensing Symposium.Quebec City:IEEE,2014:3129-3132.
  • 6SANKARANARAYANAN A C,STUDER C,BARANIUK R G.CS-MUVI:video compressive sensing for spatial-multiplexing cameras[C]//Proceedings of 2012 IEEE International Conference on Computational Photography.Seattle:IEEE,2012:1-10.
  • 7GAN L.Block compressed sensing of natural images[C]//Proceedings of 2007 15th International Conference on Digital Signal Processing.Cardiff:IEEE,2007:403-406.
  • 8KINGSBURY N.Complex wavelets for shift invariant analysis and filtering of signals[J].Applied and Computational Harmonic Analysis,2001,10(3):234-253.
  • 9张秋余,孙媛,晏燕.基于分块自适应压缩感知的可逆水印算法[J].电子与信息学报,2013,35(4):797-804. 被引量:15
  • 10张好好,吴游,于睿,冯金金.一种基于压缩感知的数字图像水印算法[J].现代电子技术,2014,37(22):10-13. 被引量:5

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部