期刊文献+

OpenCV耦合三目视觉的标准件目标定位研究与应用 被引量:4

The Location Research and Application on The Target of Standard Parts Based on OpenCV and Trinocular Vision
下载PDF
导出
摘要 在制造业自动化生产过程中,需要对标准件上某些目标进行定位,从而以此为依据对生产件进行校准。由于标准件为金属物品,且表面粗糙,打光成像后,目标背景复杂,而当前的图像目标定位算法不稳定。对此,文章提出了一个基于Open CV与三目视觉的标准件定位机制。首先基于三个Basler工业相机实现图像采集;然后基于形态学处理与阈值分割处理得到目标的大致区域,再通过轮廓匹配得到目标的精确坐标,轮廓特征有周长、长宽比、长宽差。最后引入特征判断机制,实现不良检测。最后测试了该机制性能,结果表明:与普通的图像目标定位算法相比,在图像目标特征不明显,且背景复杂时,该机制具有更好的定位与检测效果,准确定位出图像目标的轮廓。 In the process of manufacture automation production, some target positioning on the standard parts was needed, and on this basis to produce a calibration. Because of the standard parts were made of metal objects, and the surface is rough, imaging after polishing, target with complex background. And the current image target localization algorithm is not stable, when the target is very small, which make characteristics not obvious, make poor quality of positioning. To solve this, this paper proposes a targetlocation of standard parts based on opencv and trinocular vision. First of all, based on three industrial camera to realize Image acquisition;Then based on threshold segmentation and morphological processing target area is acquired, target precise coordinates is obtained by contour matching again, contour features of area, perimeter, aspect ratio, width is poor. Characteristics determine mechanism is introduced, for detecting adverse. Finally tested in this paper, the mechanism of performance, the results show that, compared with ordinary image target localization algorithm in the image where the target is very small, which make characteristics not obvious, mechanism in this paper has better positioning effect, pinpoint the outline of the image target.
出处 《组合机床与自动化加工技术》 北大核心 2015年第1期67-70,共4页 Modular Machine Tool & Automatic Manufacturing Technique
基金 国家自然科学基金资助项目(61163034) 国家自然科学基金资助项目(61373067) 内蒙古自然科学基金资助项目(2013MS0911) 内蒙古民族大学科学研究项目(NMD1231) 内蒙古自治区"草原英才工程"(2013) 内蒙古自治区"青年科技领军人才"(NJYT-14-A09) 内蒙古自治区"321人才工程"二层次人选(2010)
关键词 图像目标定位 标准件 三目视觉 轮廓匹配 特征判断 OPENCV image orientation standard parts trinocular vision contour matching industrial camera OpenCV
  • 相关文献

参考文献7

二级参考文献78

  • 1孙晋豪,杨燕翔.基于机器视觉的零部件尺寸测量[J].工业控制计算机,2007,20(7):3-4. 被引量:8
  • 2Carsten Steger, Markus Ulrich, Christian Wiedemann.机器视觉算法与应用[M].杨少荣,吴迪靖,段德山,译,北京:清华大学出版社,2008.
  • 3RafaelC.Ganzales.数字图像处理(第二版)[M].北京:电子工业出版社,2008.
  • 4威洛斯,焦宗夏.基于ViSionPro的焊膏印刷机视觉定位系统[C].第十一二届中国体视学与图像分析学术会议论文集,2008年:533-539.
  • 5BRADSKIG,KAEBLERA.学习OpenCV[M].于仕琪,刘瑞琪,译.北京:清华大学出版社,2009.
  • 6Trucco E, Verri A. Introductory techniques for 3-D computer vision [ M ]. Prentice Hall, 1998.
  • 7Cognex, Cognex MVS8100D and CDC Cameras Hardware Manual, 2006.
  • 8Cognex,VisionPro. net Help,2006.
  • 9Savvides A, Han CC, Strivastava MB. Dynamic fine-grained localization in ad-hoc networks of sensors. In: Proc. of the ACM Int'l Conf. on Mobile Computing and Networking (MOBICOM). 2001. 166-179. [doi: 10.1145/381677.381693].
  • 10McGuire M, Plataniotis KN, Venetsanopoulos AN. Location of mobile terminals using time measurements and survey points. IEEE Trans. on Vehicular Technology, 2003,52(4):999-1011. [doi: 10.1109/TVT.2003.814222].

共引文献153

同被引文献32

  • 1KAUL T,GRIEBEL R,KAUFMANN E. Transcription as a Tool for Increasing Metalinguistic Awareness in Learners of German Sign Language as a Second Language[J]. Teaching and Learning Signed, 2014,18 ( 11 ) : 383-- 387.
  • 2RUSHTON VEoHIRSCHMANN PN,BEARN DR. The ef- fectiveness of undergraduate teaching of the identification of radiographic film faults [J]. Dentomaxillofacial Radiology, 2014, 34(6): 225--232.
  • 3HSIUNG CM,LUO LF,CHUNG HC. Early identification of ineffective cooperative learning teams[J].Journal of Com puter Assisted Learning,2014, 30(6) :534--545.
  • 4RAJKUMAR TMP, LATTE MV. Adaptive Thresholding Based Medical Image Compression Technique Using Haar Wavelet Based Listless SPECK Encoder and Artificial Neural Network[J]. Journal of Medical Imaging and Health Infor- matics,2015, 5(2) :223--234.
  • 5SHARMA P,KHAN K,AHMADK. Image denoising using local contrast and adaptive mean in wavelet transform domain [J]. International Journal of Wavelets, Muhiresolution and Information Processing, 2014, 12 (06): 1450038 - 1 1450038-- 15.
  • 6SHARMA Y,MEGHRAJANI YK. Extraction of Grayseale Brain Tumor in Magnetic Resonance Image[J]. International Journal of Advanced Research in Computer and Communica- tion Engineering, 2014, 3(11): 8542--8545.
  • 7CHOU I.D,CHEN CC,KUI CK. Implementation of Face De- tection Using OpenCV for Internel Dressing Room[J]. Ad- vanced Technologies, 2014, 260(23): 587--592.
  • 8杨青燕,彭延军.基于灰度图像的答题卡识别技术[J].山东科技大学学报(自然科学版),2009,28(3):99-102. 被引量:17
  • 9吕鸣,陈治平.提高自学考试答题卡识别准确率的探讨及实践[J].中国考试,2011(5):38-41. 被引量:5
  • 10刘景能,曾贵华.Improved Global Context Descriptor for Describing Interest Regions[J].Journal of Shanghai Jiaotong university(Science),2012,17(2):147-152. 被引量:3

引证文献4

二级引证文献29

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部