摘要
在制造业自动化生产过程中,需要对标准件上某些目标进行定位,从而以此为依据对生产件进行校准。由于标准件为金属物品,且表面粗糙,打光成像后,目标背景复杂,而当前的图像目标定位算法不稳定。对此,文章提出了一个基于Open CV与三目视觉的标准件定位机制。首先基于三个Basler工业相机实现图像采集;然后基于形态学处理与阈值分割处理得到目标的大致区域,再通过轮廓匹配得到目标的精确坐标,轮廓特征有周长、长宽比、长宽差。最后引入特征判断机制,实现不良检测。最后测试了该机制性能,结果表明:与普通的图像目标定位算法相比,在图像目标特征不明显,且背景复杂时,该机制具有更好的定位与检测效果,准确定位出图像目标的轮廓。
In the process of manufacture automation production, some target positioning on the standard parts was needed, and on this basis to produce a calibration. Because of the standard parts were made of metal objects, and the surface is rough, imaging after polishing, target with complex background. And the current image target localization algorithm is not stable, when the target is very small, which make characteristics not obvious, make poor quality of positioning. To solve this, this paper proposes a targetlocation of standard parts based on opencv and trinocular vision. First of all, based on three industrial camera to realize Image acquisition;Then based on threshold segmentation and morphological processing target area is acquired, target precise coordinates is obtained by contour matching again, contour features of area, perimeter, aspect ratio, width is poor. Characteristics determine mechanism is introduced, for detecting adverse. Finally tested in this paper, the mechanism of performance, the results show that, compared with ordinary image target localization algorithm in the image where the target is very small, which make characteristics not obvious, mechanism in this paper has better positioning effect, pinpoint the outline of the image target.
出处
《组合机床与自动化加工技术》
北大核心
2015年第1期67-70,共4页
Modular Machine Tool & Automatic Manufacturing Technique
基金
国家自然科学基金资助项目(61163034)
国家自然科学基金资助项目(61373067)
内蒙古自然科学基金资助项目(2013MS0911)
内蒙古民族大学科学研究项目(NMD1231)
内蒙古自治区"草原英才工程"(2013)
内蒙古自治区"青年科技领军人才"(NJYT-14-A09)
内蒙古自治区"321人才工程"二层次人选(2010)