期刊文献+

CRISPR/Cas9技术在HepG2基因组中进行定点基因突变的探索

Exploration of site-directed mutagenesis mediated by CRISPR/Cas9 system in HepG2
下载PDF
导出
摘要 目的探索利用CRISPR/Cas9技术在细胞株Hep G2基因组中进行定点突变。方法设计并构建靶向核受体LRH-1和ERRα基因组序列的g RNA质粒。将构建好的g RNA质粒和h Cas9质粒转染Hep G2细胞后,PCR扩增Hep G2基因组中LRH-1和ERRα基因的突变位点,并用SURVEYOR法检测突变情况。结果靶向核受体LRH-1和ERRα基因组序列的g RNA质粒构建成功。Hep G2细胞经g RNA-LRH-1/g RNA-ERRα和h Cas9转染后,针对LRH-1和ERRα的突变位点基因组序列的PCR产物经SURVEYOR法检测结果显示出现两条与预计大小相符的电泳条带。结论在Hep G2细胞中成功利用CRISPR/Cas9技术介导的基因组编辑对LRH-1和ERRα特定基因组序列产生突变,为构建其细胞株敲除模型奠定了基础。 Objective To explore whether CRISPR/Cas9 system could be effective in hepatocarcinoma cell line Hep G2. Methods g RNA plasmids targeting nuclear receptor LRH-1 and ERR α were designed and constructed. After verification by sequencing, g RNA-LRH-1/g RNA-ERR α and h Cas9 plasmids were transfected in Hep G2 cells respectively. Then mutation sites were amplified by PCR and mutation rates were evaluated by SURVEYOR assay. Results g RNA-LRH-1 and g RNA-ERRα recombination plasmids targeting nuclear receptor LRH-1and ERRα were successfully established. After transfecting Hep G2 with g RNA-LRH-1/g RNA-ERRα and h Cas9, the mutation sites were amplified by PCR and subjected to SURVEYOR assay. The electrophoresis results showed that two additional bands with expected size were found in cells transfected with g RNA-LRH-1/g RNA-ERRα and h CAS9.Conclusion The site-directed mutagenesis of LRH-1 and ERRα gene locus were successfully created by genome editing mediated by CRISPR/Cas9 in Hep G2, which provides the basis for the generation of Hep G2-LRH-1/ERR αknockout cell model.
出处 《海南医学》 CAS 2015年第1期7-10,共4页 Hainan Medical Journal
基金 深圳市卫生计生系统科研项目(编号:201402135)
关键词 CRISPR HEPG2 基因组编辑 定点突变 CRISPR HepG2 Genome editing Site-directed mutagenesis
  • 相关文献

参考文献10

  • 1Wiedenheft B,Sternberg SH,Doudna JA.RNA-guided genetic si-lencing systems in bacteria and archaea[J].Nature,2012,482(7385):331-338.
  • 2Bhaya D,Davison M,Barrangou R.CRISPR-C as systems in bacte-ria and archaea:versatile small RNAs for adaptive defense and regu-lation[J],Annu Rev Genet,2011,45:273-297.
  • 3Terns MP,Tems RM.CRISPR-based adaptive immune systems[J],Curr Opin Microbiol,2011,14(3):321-327.
  • 4Cong L,Ran FA,Cox D,et al.Multiplex genome engineering using CRISPR/Cas systems[J].Science,2013,339(6121):819-823.
  • 5Jinek M,Chylinski K,Fonfara I,et al.A programmable du-al-RNA-guided DNA endonuclease in adaptive bacterial immunity[J].Science,2012,337(6096):816-821.
  • 6Mali P,Yang L,Esvelt KM,et al.RNA-guided human genome engi-neering via Cas9[J].Science,2013,339(6121):823-826.
  • 7Zhang F,Wen Y,Guo X.CRISPR/Cas9 for genome editing:prog-ress,implications and challenges[J].Hum Mol Genet,2014,23(R1):R40-46.
  • 8Wilkinson R,Wiedenheft B.A CRISPR method for genome engi-neering[J].FlOOOPrime Rep,2014,6:3.
  • 9Wang H,Yang H,Shivalila CS,et al.One-step generation of micecarrying mutations in multiple genes by CRISPR/Cas-mediated ge-nome engineering[J].Cell,2013,153(4):910-918.
  • 10Francis GA,Fayard E,Picard F,et al.Nuclear receptors and the con-trol of metabolism[J].Annu Rev Physiol,2003,65:261-311.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部