期刊文献+

大气CO_2浓度时空变化卫星遥感监测的应用潜力分析 被引量:14

Temporal and spatial potential applications of satellite remote sensing of atmospheric CO_2 concentration monitoring
原文传递
导出
摘要 GOSAT卫星观测反演大气CO2浓度精度已经提高到了1—2 ppm,而卫星数据能否准确地揭示全球和区域大气CO2浓度变化特征还缺乏充分的评价与分析。本文针对已经连续运行观测3年的GOSAT卫星,收集了来自美国NASA-OCO团队(ACOS)和日本环境研究所GOSAT团队(NIES)基于各自算法反演的两套大气CO2柱浓度数据,描述并分析了全球大气CO2时空变化特征。分析结果表明,从XCO2反演的绝对值结果来看ACOS总体上比NIES的高出约2 ppm左右,但从时空的相对变化上它们揭示了相近的大气CO2浓度时空变化特征。两套数据显示出全球平均大气CO2浓度在2010年—2012年的3年期间年增量分别为1.8 ppm和2.0 ppm;季节变化幅度,北半球最大4—6 ppm,南半球最大约2 ppm,这与地面观测结果基本一致。进一步将EDGAR 4.2人为排放总量格网化数据与GOSAT卫星观测反演的CO2浓度进行相关统计分析,结果指出两套数据对人为排放量有着微弱的响应。本文结果指出目前GOSAT卫星观测反演的XCO2可以检测出全球和区域大气CO2浓度的年变化、季节变化和区域空间变化的特征;GOSAT卫星10.5 km空间分辨率的观测虽难于检测出点源的浓度变化,但从区域上对人为排放的累积效应的监测显示了一定的应用潜力。 The applicability of column-averaged CO2 dry-air mixing ratio ( XCO2 ) data derived from Greenhouse Gases Observing Satellite (GOSAT) observations should be comprehensibly analyzed. Such assessment is important to reveal spatiotemporal variations in atmospheric CO2 concentration at the global and regional scales, as the XCO2 retrieval bias of GOSAT has decreased to 1- 2 ppm. We analyzed and evaluated the spatial and temporal variations in XCO2 at a global and regional scale using GOSAT data from 2010 to 2012. Furthermore, we preliminarily analyzed the response of GOSAT data to anthropogenic emissions. Two data sets of XCO2 from the OCO team of NASA (ACOS) and the Japan National Institute of Environmental Studies (NIES) GOSAT team, respectively, were used with different retrieval algorithms for GOSAT observations. ACOS-XCO2 is generally approximately 2 ppm higher than NIES-XCO2, whereas similar variability at space and time is shown in the two data sets. The annual increment of global averaged atmospheric XCO2 concentration is 1.8 ppm from 2010 to 2011 and 2.0 ppm from 2011 to 2012 ; the seasonal variation is 4-6 ppm in the Northern Hemisphere and approximately 2 ppm in the Southern Hemisphere; this finding is generally consistent with the statistical results of CO2 variability from ground-based measurements. In addition, GOSAT observations respond weakly to the anthropogenic emissions on the basis of correlation analysis between yearly averaged GOSAT XCO2 and cumulative yearly anthropogenic emissions obtained from the Emissions Database for Global Atmospheric Research data. Our results demonstrate that GOSAT observations can detect the spatial and seasonal variability in CO2 at a global and regional scale. These observations can be applied in monitoring the cumulative effects of anthropogenic emissions at the regional scale, although GOSAT encounters difficulty in detecting the variation magnitude of CO2 induced by the point source emission because of the unrefined spatial resolution of GOSAT footprints.
出处 《遥感学报》 EI CSCD 北大核心 2015年第1期34-45,共12页 NATIONAL REMOTE SENSING BULLETIN
基金 国家高技术研究发展计划(863计划)(编号:2012AA12A301) 中国科学院战略性先导科技专项(编号:XDA050401)
关键词 GOSAT 大气CO2浓度 时空变化 人为排放 GOSAT, atmospheric CO2 concentration, temporal and spatial variation, anthropogenic emissions
  • 相关文献

参考文献16

  • 1Bovensmann H, Buchwitz M, Burrows J P, Reuter M, Krings T, Geril- owski K, Schneising O, Heymann J, Tretner A and Erzinger J. 2010. A remote sensing technique for global monitoring of power plant CO2 emissions from space and related applications. Atmos- pheric Measurement Techniques, 3:781 -811.
  • 2Buchwitz M, Reuter M, Sehneising O, Boesch H, Guerlet S, Dils B, Aben I, Armante R, Bergamaschi P, Blumenstock T, Bovensmann H, Brunner D, Buchmann B, Burrows J P, Butz A, Chedin A, Chevallier F, Crevoisier C D, Deutscher N M, Frankenherg C, Hase F, Hasekamp O P, Heymann J, Kaminski T, Laeng A, Licht- enberg G, De Mazire M, Noel S, Nothoh J, Orphal J, Popp C, Parker R, Scholze M, Sussmann R, Stiller G P, Warneke T, Zeh- ner C, Bril A and Crisp D. 2013. The Greenhouse Gas Climate Change Initiative (GHG-CCI) : Comparison and quality assessment of near-surface-sensitive satellite-derived CO2 and CH4 global data sets[J/OL]. Remote Sensing of Environment [ DOI: 10. 1016/j. rse. 2013.04. 024 ].
  • 3蔡博峰.中国城市二氧化碳排放空间特征及与二氧化硫协同治理分析[J].中国能源,2012,34(7):33-37. 被引量:14
  • 4Cogan A J, Boesch H, Parker R J, Feng L, Palmer P I, Blavier J F L, Deutscher N M, Macatangay R, Notholt J, Roehl C, Warneke T and Wunch D. 2012. Atmospheric carbon dioxide retrieved from the Greenhouse gases Observing SATellite (GOSAT) : Comparison with ground-based TCCON observations and GEOS-Chem model calcula- tions. Journal of Geophysical Research : Atmospheres, 117 ( 21 ) : D21301 [DOI: 10. 1029/2012JD018087].
  • 5Crisp D, Fisher B M, O'Dell C, Frankenberg C, Basilio R, Btseh H, Brown L R, Castano R, Connor B, Deutscher N M, Eldering A, Griffith D, Gunson M, Kuze A, Mandrake L, Mcduffie J, Messer- schmidt J, Miller C E, Morino I, Natraj V, Notholt J, O'Brien D M, Oyafuso F, Polonsky I, Robinson J, Salawitch R, Sherlock V, Smyth M, Suto H, Taylor T E, Thompson D R, Wennberg P O, Wunch D and Yung Y L. 2012. The ACOS CO2 retrieval algorithm- Part II: Global XCO2 data characterization. Atmospheric Measure- ment Techniques, 5 (4) : 687 - 707 [DOI : 10.5194/amt - 5 - 687 -2012].
  • 6Dufour E and Breon F M. 2003. Spaceborne estimate of atmospheric CO2 column by use of the differential absorption method : error analysis. Applied Optics, 42(18) : 3595 - 3609 [ DOI: 10. 1364/AO. 42. 003595 ].
  • 7Feng L, Palmer P I, Yang Y, Yantosca R M, Kawa S R, Paris J D, Matsueda H and Machida T. 2011. Evaluating a 3-D transport mod- el of atmospheric CO2 using ground-based, aircraft, and space-borne data. Atmospheric Chemistry and Physics, 11 : 2789 -2803 [ DOI: 10.5194/acp - 11 -2789 -2011 ].
  • 8Keppel-Aleks G, Wennberg P O, O'Dell C W and Wuneh D. 2013. To- wards constraints on fossil fuel emissions from total eolurrm carbondioxide. Atmospheric Chemistry and Physics, 13:4349 -4357 [DOI: 10.5194/aep - 13 -4349 - 2013 ].
  • 9Kuai L, Worden J, Kulawik S, Bowman K, Lee M, Biraud S C, Abshire J B, Wofsy S C, Natraj V, Frankenberg C, Wunch D, Cormor B, Miller C, Roehl C, Shia R-L and Yung L Y. 2013. Profiling tropo- spheric CO2 using Aura TES and TCCON instruments. Atmospheric Measurement Techniques, 6( 1 ) : 63 - 79 [DOI : 10. 5194/amt - 6 -63 -2013].
  • 10雷莉萍,关贤华,曾招城,张兵,茹菲,布然.基于GOSAT卫星观测的大气CO_2浓度与模型模拟的比较[J].中国科学:地球科学,2014,44(1):61-71. 被引量:10

二级参考文献72

  • 1张磊,董超华,张文建,张鹏.METOP星载干涉式超高光谱分辨率红外大气探测仪(IASI)及其产品[J].气象科技,2008,36(5):639-642. 被引量:20
  • 2陈鹏.中国煤炭性质、分类和利用[M].北京:化学工业出版社,2009.138-582.
  • 3Intergovernmental Panel on Climate Change (IPCC).IPCC Fourth Assessment Report: Climate Change 2007[R]. 2007: 104.
  • 4Aumann H H,Chahine M T,Gautier C,et al. AIRS/AMSU/ HSB on the Aqua Mission: Design, Science Objectives, Data Products,and Processing Systems[J]. IEEE Transactions on Geoscience and Remote Sensing, 2003,41 (2) : 253-246.
  • 5Burrows J P, Holzle E, Goede P H, et al. SCIAMACHY Scan- ning Imaging Absorption Spectrometer[J]. Acta Astronauti ca,1995,35(7) :445-451.
  • 6Crisp D, Atlas R M,Breon F M,et al. The Orbiting Carbon Observatory (OCO) Mission [J]. Advances in Space Re- search, 2004,34: 700-709.
  • 7Chahine M T, Barnet C, Olsen E T, et al. On the Determina tion of Atmospheric Minor Gases by the Method of Vanishing Partial Derivatives with Application to CO2[J]. Geophysical Research Letters,2005,32(L22803) : 1-5.
  • 8Chahine M,Chen L,Dimotakis P,et al. Satellite Remote Sou- nding of Mid-tropospheric CO2 [J]. Geophysical Research Let- ters,2008,35(L17807) :1-5.
  • 9Weng F, Zhao L, Ferraro R R, et al. Advanced Microwave SoL unding Unit Cloud and Precipitation Algorithm[J]. Radio Sci- ence, 2003,38(4): 1-13.
  • 10Buchwitz M, Schneising O, Burrows J P, et al. First Direct Observation of the Atmospheric CO2 Year-to Year Increase from Space[J]. Atmospheric Chemistry and Physics, 2007,7: 4249-4256.

共引文献76

同被引文献147

引证文献14

二级引证文献82

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部