期刊文献+

短波红外CO_2反演过程约束研究及初步反演结果 被引量:1

CO_2 retrieval and preliminary retrieval results from space-based observations in shortwave infrared band
原文传递
导出
摘要 短波红外通道卫星CO2遥感是近年国际研究热点。首先,开展了卫星观测对气溶胶及大气温度的敏感性研究;其次,针对基于最优化理论的非线性迭代反演方法反演过程中的不收敛问题,提出了修正的阻尼牛顿方法(MDNM),并利用模拟数据评估了MDNM方法的有效性;最后,利用GOSAT卫星数据反演CO2的垂直混合比浓度,并与地基TCCON站点数进行比对。研究结果表明:短波近红外CO2卫星遥感受气溶胶散射及温度影响明显;通过地基比对初步验证了MDNM具有良好的精度,两者的相关性R2达到了0.729。 CO2 is a primary greenhouse gas in the atmosphere and many scientific missions from all over the world are focused on space-based remote sensing of CO2 using shortwave infrared technique. We present an improved method to retrieve CO2 column abundance from space-based observations in a shortwave infrared band. We analyze the sensitivities of CO2 observations to aerosol scattering and atmospheric temperature profiling using the forward model. We also evaluate the reduced accuracy of CO2 retrieval caused by aerosol scattering and 1 K random error of temperature profiles. We propose a Modified Damped Newton Method (MDNM) for CO2 retrieval and present the retrieval samples to evaluate the performance of the proposed algorithm. Sensitivity stud- ies show that the influence of aerosol scattering and temperature on CO2 remote sensing and scattering can cause a misestimate of up to 13.2 ppm of CO2 concentration. We retrieve the CO2 column abundance from GOSAT L1B data using MDNM method, and the results are compared with ground-based measurements from Total Carbon Column Observing Network (TCCON). The correlation coefficient R-square between the retrieved results and TCCON measurements is 0.729. Sensitivity studies show that aerosol scattering can cause a significant error in CO2 retrieval. A comparison between satellite retrievals and ground-based measurements shows good agreement. The proposed MDNM method is preliminarily proven to accurate.
出处 《遥感学报》 EI CSCD 北大核心 2015年第1期46-53,共8页 NATIONAL REMOTE SENSING BULLETIN
基金 国家自然科学基金重点项目(编号:41130528)
关键词 CO2 修正的阻尼牛顿方法(MDNM) 反演 GOSAT CO2, MDNM, Retrieve, GOSAT
  • 相关文献

参考文献23

  • 1Aumann H H, Gregorich D and Gaiser S. 2005. AIRS hyper-spectral measurements for climate research : Carbon dioxide and nitrous oxide effects. Geophysical Research Letters, 32 ( 5 ) : 1-05806 [DOI : 10. 1029/2004GL021784 ].
  • 2Bovensmann H, Burrows J P, Buehwitz M, Freriek J, Noiel S, Rozanov V V, Chance K V and Goede A P H. 1999. SCIAMACHY : mission objectives and measurement modes. Journal of the Atmospheric Sci- ences, 56(2): 127 -150 [DOI: 10. 1175/1520 -0469(1999) 056 <0127 :SMOAMM >2.0. CO;2].
  • 3CARBOEUROPE-IP. 2004. Assessment of the European Terrestrial Car- bon Balance, Tech. Rep. , EU Sixth Framework Programme, priori- ty 1. 1. 6. 3 Global Change and Ecosystems.
  • 4Clough S A, Iacono M J and Moncet J-L. 1992. Line-by-line calculations of atmospheric fluxes and cooling rates: application to water vapor. Journal of Geophysical Research : Atmospheres ( 1984-2012 ), 97 (D14) : 15761 - 15785 [ DOI : 10. 1029/92JD01419 ].
  • 5Crevoisier C, Chdin A, Matsueda H, Machida T, Armante R and Scott N A. 2009. First year of upper tropospheric integrated content of CO: from IASI hyperspeetral infrared observations. AtmosphericChemistry and Physics Discussions, 9:8187 - 8222 [ DOI: 10. 5194/acpd - 9 - 8187 - 2009 ].
  • 6Crisp D, Alias R M, Breon F M, Brown L R, Rurrows J P, Ciais P, Connor B J, Doney S C, Fung I Y, Jacob D J, Miller C E, O'Brien D, Pawson S, Randerson J T, Rayner P, Salawitch R J, Sander S P, Sen B, Stephens G L, Tans P P, Toon G C, Wennberg P O, Wofsy S C, Yung Y L, Kuang Z, Chudasama B, Sprague G, Weiss B, Pollock R, Kenyon D and Schroll S. 2004. The Orbiting Carbon Observatory (OCO) mission. Advances in Space Research, 34(4) : 700 - 709 [DOI : 10. 1016/j. asr. 2003.08. 062].
  • 7Engelen R J, Andersson E, Chevallier F, Hollingsworth A, Matricard M, McNally A P, Thepaut J N and Watts P D. 2004. Estimating atmospheric CO2 from advanced infrared satellite radiances within an operational 4D-Var data assimilation system: methodology and first results. Journal of Geophysical Research: Atmospheres ( 1954-2012), 109(D19) : D19309 [DOI: 10. 1029/2004JD00d777].
  • 8Engelen R J and Mcnally A P. 2005. Estimating atmospheric CO2 from advanced infrared satellite radiances within an operational four- dimensional variational (4D-Var) data assimilation system: results and validation. Journal of Geophysical Research: Atmospheres (1984-2012), 110(D18): D18305 [DOI: 10.1029/2005JD005982].
  • 9Houweling S, Hartmann W, Aben I, Schrijver H, Skidmore J, Roelofs G J and Breon F M. 2005. Evidence of systematic errors in SCIAMA- CHY-observed CO2 due to aerosols. Atmospheric Chemistry and Physics, 5 : 3003 - 3313 [ DOI : 10. 5194/acp - 5 - 3003 - 2005 ].
  • 10IPCC. 2007. Climate Change 2007 : The Physical Science Basis. Contri- bution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, United Kingdom and New York, NY, USA: Cambridge University Press, 996pp.

二级参考文献49

  • 1蒋德明,董超华,陆维松.利用AIRS观测资料进行红外高光谱大气探测能力试验的研究[J].遥感学报,2006,10(4):586-592. 被引量:11
  • 2Chahine M. Inverse problems in radiative transfer: Determination of atmospheric parameters [ J ]. Journal of Atmospheric Science, 1970,27 : 960-967.
  • 3Smith W L. lterative solution of the radiative transfer equation for the temperature and absorbing gas profile of an atmosphere[ J]. Applied Optics,1970, 9:1 993-1 999.
  • 4Rodgers C D. Retrieval of atmospheric temperature and composition from remote measurements of thermal radiation[ J].Reviews of Geophysics and Space Physics, 1976,14 (4) : 609-624.
  • 5Smith W L, Woolf H M, Revercomb H E. Linear simuhaneous solution for temperature and absorbing constituent profiles from radiance spectra[J]. Applied Optics,1991,30(9) : 1 117-1 123.
  • 6Lorene A C. Analysis methods for numerical weather prediction [ J ]. Quarterly Journal of the Royal Meteorological Society, 1986, 112:1 177-1 194.
  • 7Lorenc A C. Optimal nonlinear objective analysis [ J ]. Quarterly Journal of the Royal Meteorological Society, 1988,114: 205-240.
  • 8Eyre J R. Inversion of cloudy satellite sounding radiances by nonlinear optimal estimation. Ⅰ: Theory and sinmlation for TOVS [ J]. Quarterly Journal of the Royal Meteorological Society, 1989, 115(489) : 1 001-1 026.
  • 9Eyre J R. Inversion of cloudy satellite sounding radiances by nonlinear optimal estimation. Ⅱ: Application to TOVS data [ J]. Quarterly Journal of the Royal Meteorological Society, 1989,115 (489) : 1 027-1 037.
  • 10Chahine M T, Aumann H, Goldberg M,et al. AIRS-Team retrieval for core products and geophysical parameters. AIRS Algorithm Theoretical Basis Doc. , Version 2.2 [ DB/OL]. JPL D-17006, http ://eospso. gsfc. nasa. gov/ eos_homepage/for_scientists/atbd/docs/AIRS/atbd - airs - L2. pdf. 2002.

共引文献11

同被引文献26

引证文献1

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部