摘要
针对混合动力电动汽车(HEV)的结构和特点,建立了车辆侧面碰撞有限元仿真模型,并对其侧面碰撞安全性进行了相关研究。以仿真分析结果为参考基础,以提高整车侧面碰撞安全性为优化目标,运用径向基函数神经网络技术建立了某款混合动力电动汽车的优化计算函数,对车辆侧面碰撞安全性能相关的结构参数和乘员约束系统进行优化计算和影响性分析;以优化计算的结果为指导,对该款混合动力电动汽车的安全结构设计方案进行了调整和优化,以全面提高侧面碰撞的被动安全性;将优化设计后的混合动力电动汽车进行实车侧面碰撞试验,并将实车碰撞试验结果与仿真侧面碰撞试验计算结果进行对比分析。研究结果表明:建立的混合动力电动汽车的仿真优化模型具有较高的计算精度,如非碰撞侧B柱实测碰撞加速度值与仿真分析值相差仅2.2%,优化计算函数的仿真计算结果是可靠的,优化设计后的混合动力电动汽车侧面碰撞安全性明显提高。
According to the structure and characteristics of the hybrid electric vehicle, one finite el ement model of HEV side collision safety protection has been constructed and analyzed. Based on the analysis results and the aim of improving the vehicle side collision safety, a RBF neural net- work technology was applied to establish an optimization calculation function to calculate the struc- ture parameters related to the vehicle safety and optimize the occupant restraint system. Taking the results of caculation as a guide, this paper adjusted and optimized the design of HEV safety structure to improve the side impact passive safety. Finally, a real vehicle crash test was carried out and a comparison between the optimal simulative calculation results and the real vehicle crash test results of a hybrid electric vehicle side impact was made. The results show that established HEV simulation optimized model has high accuracy. For instance, the difference between the ac- celeration value of the non crash contact B pillar and simulation value is only 2.2 %. Not only does the comparison prove the accuracy of the simulation results, but also improve the hybrid electric vehicle side impact safety obviously. 2 tabs, 6 figs, 11 refs.
出处
《长安大学学报(自然科学版)》
EI
CAS
CSCD
北大核心
2014年第6期162-167,共6页
Journal of Chang’an University(Natural Science Edition)
基金
国家自然科学基金项目(51202164)
浙江省自然科学基金项目(LQ13E070003)