期刊文献+

Maxwell方程的高阶间断有限元数值解法

High-Order Discontinuous Galerkin Solution of Maxwell′s Equations
下载PDF
导出
摘要 采用高精度方法求解时域Maxwell方程,方程的空间离散采用基于计算流体力学(Computational fluid dynamics,CFD)领域的高阶间断有限元格式,非定常时间迭代采用四步龙格-库塔格式。为了提高计算效率,本文采用了Quadrature-free implementation和网格分区并行技术。数值结果表明,采用高阶格式的情况下,采用稀疏网格便可以得到高精度数值解。另外由于本文的方法基于非结构网格,因此非常适合计算复杂外形的情况。 A highly-accurate numerical method is used to solve the two-dimensional Maxwell's equations,where a computational fluid dynamics(CFD) based discontinuous galerkin(DG) method is employed for the spatial discretization and the four-step Runge-Kutta is used for time-stepping.In order to improve the efficiency,the quadrature-free implementation and the parallel computing based on mesh partitioning are used.Numerical tests indicate that highly-accurate solutions can be obtained when using high orders even on very coarse grids.More importantly,this CFD-based high-order DG method for the Maxwell's equations is very suitable for complex geometries since it is implemented on unstructured mesh.
出处 《南京航空航天大学学报》 EI CAS CSCD 北大核心 2014年第6期882-887,共6页 Journal of Nanjing University of Aeronautics & Astronautics
基金 国家自然科学基金(11272152)资助项目 江苏高校优势学科建设工程资助项目
关键词 MAXWELL方程 间断有限元方法 雷达散射截面 Maxwell's equations discontinuous galerkin method radar cross-section
  • 相关文献

参考文献22

  • 1Yee K S. Numerical solution of initial value problems involving Maxwell's equation in isotropic media[J]. IEEE Trans Antennas Prop 1966, 14(3): 302-307.
  • 2Taflove A, Hagness S C. Computational electrody- namics: The finite-difference time-domain method [M]. Norwood, MA:Artech House,2000.
  • 3Cangellaris A C,Wright D B. Analysis of the numeri- cal error caused by the stair-stepped approximation of a conducting boundary in FDTD Simulations of elec- tromagnetic phenomena[J]. IEEE Trans An-tennas Prop, 1991,39(10) : 1518-1525.
  • 4Cohen G, Monk P. Mur-nedelec finite element schemes for Maxwell' s equations [J]. Comp Meth Appl Mech Eng, 1999,169(3/4):197-217.
  • 5Piperno S, Remaki M, Fezoui I: A non-diffusive fi- nite volume scheme for the 3d Maxwell euqations on unstructured meshes [J]. SIAM J Numer Anal, 2002, 39(6): 2089- 2108.
  • 6高煜堃,陈红全.基于非结构网格格点FVTD算法的电磁散射模拟[J].南京航空航天大学学报,2013,45(3):415-423. 被引量:6
  • 7陈刚,高正红.结构/直角切割网格下时域有限体积法在计算电磁中的应用研究[J].航空学报,2007,28(5):1033-1039. 被引量:2
  • 8许勇,乐嘉陵.基于CFD的电磁散射数值模拟[J].空气动力学学报,2004,22(2):185-189. 被引量:7
  • 9Cockburn B, Karniadakis G E,Shu C W. Discontinu- ous Galerkin methods: Theory, computation and ap- plications[M]. Springer Berlin Heidelberg: Is. n. ], 2000.
  • 10Lu Tiao, Zhang Pngwen, Cai Wei. Discontinuous Galerkin methods for dispersive and lossy Maxwells equations and PML boundary conditions[J]. Journal of Computational Physics, 2004, 200(2) : 549-580.

二级参考文献34

  • 1薛晓春,王雪华.用二维时域有限差分法计算机翼雷达散射截面[J].计算物理,2005,22(1):65-69. 被引量:6
  • 2葛德彪,石守元,朱之伟.一种新的FDTD入射场设置方法[J].微波学报,1995,11(3):187-190. 被引量:12
  • 3赫新,陈坚强,毛枚良,邓小刚.多块对接网格技术在电磁场散射问题中的应用[J].计算物理,2005,22(5):465-470. 被引量:2
  • 4聂纯,汪连栋,何洪涛.RCS数值计算的时域有限体积方法[J].雷达与对抗,2006(1):21-25. 被引量:3
  • 5[1]YEE K S.Numerical solution of initial boundary value problems involving Maxwell' s equations in isotropic media [ R].IEEE Trans.Antennas Propagation,1966,14:302~307
  • 6[2]HOLLAND.Finite-difference solution of Maxwell's equations in generalized coordinates.IEEE Trans.Nuclear Science,1983,30.
  • 7[3]SHANKAR V,HILL W,MOHAMMADIAN A H.A CFDbased finite-volume procedure for computational electromagnetics-interdisiplinary applications of CFD methods [R].AIAA1989-1987-CP.
  • 8[4]SHANG J S ,GAITONDE D.Characteristic-based ,time-dependent Maxwell equations solver on a general curvilinear frame [R].AIAA-93-3178.
  • 9[5]VINH H,DWYER H A,VAN DAM C P.Finite-difference algorithms for the time-domain Maxwell's equations - a numerical approach to RCS analysis [ R].AIAA-92-2989.
  • 10[6]HUH K S et al.A compact high-order finite-volume time-domain/frequency-domain method for electromagnetic scattering[R].AIAA-92-0453.

共引文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部