摘要
采用高精度方法求解时域Maxwell方程,方程的空间离散采用基于计算流体力学(Computational fluid dynamics,CFD)领域的高阶间断有限元格式,非定常时间迭代采用四步龙格-库塔格式。为了提高计算效率,本文采用了Quadrature-free implementation和网格分区并行技术。数值结果表明,采用高阶格式的情况下,采用稀疏网格便可以得到高精度数值解。另外由于本文的方法基于非结构网格,因此非常适合计算复杂外形的情况。
A highly-accurate numerical method is used to solve the two-dimensional Maxwell's equations,where a computational fluid dynamics(CFD) based discontinuous galerkin(DG) method is employed for the spatial discretization and the four-step Runge-Kutta is used for time-stepping.In order to improve the efficiency,the quadrature-free implementation and the parallel computing based on mesh partitioning are used.Numerical tests indicate that highly-accurate solutions can be obtained when using high orders even on very coarse grids.More importantly,this CFD-based high-order DG method for the Maxwell's equations is very suitable for complex geometries since it is implemented on unstructured mesh.
出处
《南京航空航天大学学报》
EI
CAS
CSCD
北大核心
2014年第6期882-887,共6页
Journal of Nanjing University of Aeronautics & Astronautics
基金
国家自然科学基金(11272152)资助项目
江苏高校优势学科建设工程资助项目