期刊文献+

大鱼之始——曲靖潇湘动物群中发现志留纪最大的脊椎动物 被引量:1

The rise of big fish——the largest Silurian vertebrate from Xiaoxiang Fauna, Qujing
下载PDF
导出
摘要 云南曲靖4.23亿年前的潇湘动物群在世界上独一无二地完好保存了大量志留纪有颌脊椎动物化石。2014年6月,中国科学家报道了潇湘动物群中的新成员,一种被命名为钝齿宏颌鱼(Megamastax amblyodus)的硬骨鱼,这是目前为止志留纪最大的脊椎动物。现有证据显示钝齿宏颌鱼属原始肉鳍鱼类,体长可达1.2 m,其牙齿适应捕食带硬壳的猎物,可能在食物链中占据较高的位置。这是潇湘动物群继梦幻鬼鱼和初始全颌鱼之后的又一重要发现,该发现挑战了早泥盆世埃姆斯期前不存在大型脊椎动物的传统看法,同时促使研究者重新思考已有的古大气/古海洋氧气含量变化理论模型,以及其与脊椎动物演化之间的关系。 The Silurian Xiaoxiang Fauna from Qujing, Yunnan is unique worldwide for its exquisitely-preserved jawed vertebrates either in diversity or in completeness. In June 2014, a new Silurian fish, Megamastax amblyodus, which is the largest Silurian vertebrate discovered to date with an estimated length up to 1.2 m, was reported from Xiaoxiang Fauna. The jaws of the new fish feature minute conical dentition on the occlusal margins and large blunt teeth that are fused to the coronoids, highlighting durophagous feeding. A global increase in oxygen levels may have facilitated the emergence and diversification of large jawed vertebrates in the mid-Paleozoic. Competing paleoatmospheric models predict the onset of near-modern oxygen levels during either the late Silurian (~420 Ma) or the Emsian (Early Devonian,~400 Ma). The absence of pre-Emsian fishes more than half-a-metre in length was used as support for the latter model, with presumed low pre-Devonian oxygen levels imposing evolutionary constraints on maximum vertebrate body size. The new finding is consistent with previous studies documenting an increase in gnathostome diversity and functional disparity well before the advent of the Devonian along with predictions of a late Silurian oxygen rise.
作者 朱幼安 朱敏
出处 《自然杂志》 北大核心 2014年第6期397-403,共7页 Chinese Journal of Nature
基金 国家重点基础研究发展计划(973计划)(2012CB821902)资助
关键词 志留纪 潇湘动物群 有颌类 大型化 古大气含氧量变化 Silurian Xiaoxiang Fauna gnathostome gigantism palaeoatmospheric oxygen change
  • 相关文献

参考文献9

  • 1CHOO B, ZHU M, ZHAO W, et al. The largest Silurian vertebrate and its palaeoecological implications[J]. Scientific Reports, 2014, 4: 5242.
  • 2FRIEDMAN M, BRAZEAU MD. A jaw-dropping fossil fish[J]. Nature, 2013, 502: 175-177.
  • 3ZHU M, ZHAO W J, JIA L T, et al. The oldest articulated osteichthyan reveals mosaic gnathostome characters[J]. Nature, 2009, 458: 469- 474.
  • 4ZHU M, YU X, AHLBERG P E, et at. A Silurian placoderm with osteichthyan-like marginal jaw bones[J]. Nature, 2013, 502: 188-193.
  • 5LONG J. Extraordinary 'missing link' fossil fish found in China[N/OL]. (2013-09-26)[2014-07-20]. http://theconversation.com/ extraordinary-missing-link-fossil-fish-found-in-china-18461.
  • 6DAHL T W, HAMMARLUND E U. Do large predatory fish track ocean oxygenation?[J] Communicative & Integrative Biology, 2011, 4: 92-94.
  • 7BERNER R A. Phanerozoic atmospheric oxygen: new results using the GEOCARBSULF model[J]. American Journal of Science, 2009, 309: 603-606.
  • 8GLASSPOOL I J, DIANNE EDWARDSAXE L. Charcoal in the Silurian as evidence for the earliest wildfire [J]. Geology, 2004, 32: 381.
  • 9DAHL T W, HAMMARLUND E U, ANBAR A D, et al. Devonian rise in atmospheric oxygen correlated to the radiations of terrestrial plants and large predatory fish[J]. Proceedings of the National Academy of Sciences, 2010,107: 17911-17915.

同被引文献12

  • 1Graham J. B., Dudley R., Aguilar N. M., et al. Implications of the later Palaeozoic oxygen pulse for physiology and evolut- ion. Nature, 1995,375:117--120.
  • 2Scott A. C., Glasspool I. J.. The diversification of Paleozoic fire systems and fluctuations in atmospheric oxygen concentra- tion. Proceedings of the National Academy of Sciences of the United States of America, 2006,103 (29) : 10861-- 10865.
  • 3Berner R. A., VandenBrooks J. M., Ward P. D.. Oxygen and evolution. Science, 2007,316(5824):557--558.
  • 4Harrison J. F., Kaiser A., VandenBrooks J. M.. Atmospheric oxygen level and the evolution of insect body size.Proceedings of the Royal Society of London B, 2010,277:1937--1946.
  • 5Dahl T. W., Hammarlund E. U., Anbare A. D., et al. Dev- onian rise in atmospheric oxygen correlated to the radiations of terrestrial plants and large predatory fish. Proceedings of the National Academy of Sciences of the United States of America,2010,107 (42) : 17911 -- 17915.
  • 6Berner R. A., Beetling D. J., Dudley R., et al. Phanerozoic atmospheric oxygen. Annual Review of Earth and Planetary Sciences, 2003,31:105--134.
  • 7Bemer R. A.. A combined model for Phanerozoic atmospheric 02 and CO2. Geochemica et Cosmochimiea Acta, 2006, 70: 5653--5664.
  • 8Bergman N. M., Lenton T. M., Watson A. J.. COPSE: a new model of biogeochemical cycling over Phanaerozoic time. Am- erican Journal of Science, 2004,304(5):397--437.
  • 9Scott A. C.. Charcoal recognition, taphonomy and uses in palaeoenvironmental analysis. Palaeogeography, Palaeoclimatol- ogy, Palaeoeeology, 2010,291 ( 1-2 ) : 11--39.
  • 10Glasspool I. J., Edwards D., Axe L.. Charcoal in the Early Devonian:a wildfire-derived Konservat-Lagerstatte. Review of Palaeobotany and Palynology, 2006,142 ( 3-4 ) : 131 -- 136.

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部