期刊文献+

基于DSP和双目视觉的多媒体传感器网络节点设计与实现 被引量:7

Design and implementation of wireless multimedia sensor network node based on DSP and binocular vision
下载PDF
导出
摘要 针对无线传感器网络对于多媒体信息获取的实际需求,以高性能DSP处理器为核心,结合ZigBee无线通信,设计实现了新型多媒体无线传感器节点。借助DSP的强大运算能力和外设接口,在多媒体节点上配置了双目摄像机、加速度计等传感器,实现了环境信息和图像数据的实时感知与获取,并依托ZigBee协议形成了室内环境短距无线通信与监测能力。实验结果表明,所设计的多媒体传感器节点能够准确、实时地进行综合感知数据的获取与处理,满足无线多媒体传感器网络的应用需求。 In order to meet the requirement of multimedia information acquisition in wireless sensor network,a new wireless multimedia sensor node is designed and implemented with the high-performance DSP processor as the core.ZigBee module is used to implement the wireless communication.In virtue of the powerful computing ability and peripheral interfaces of DSP processor,the multimedia node owns binocular vision and various sensors such as accelerometer.Therefore,it can attain the real-time perception of environmental information and acquire image/video data.Based on the ZigBee protocol,the sensor is able to fulfill short-distance wireless communication and monitoring duty in indoor environment.Experimental results show that the multimedia sensor node designed can accurately obtain and handle the synthetical sensing data in real time.It is suitable for the application of wireless multimedia sensor network.
出处 《通信学报》 EI CSCD 北大核心 2014年第12期210-216,共7页 Journal on Communications
基金 国家自然科学基金资助项目(61471110) 湖北省自然科学基金资助项目(2014CKB514)~~
关键词 传感器网络 多媒体节点 DSP处理器 ZigBee通信 双目视觉 sensor network multimedia node DSP processor ZigBee communication binocular vision
  • 相关文献

参考文献14

  • 1AKYILDIZ I F, SU W, SANKARASUBRAMANIAM Y, et al. W'Lreless sensor networks: a stavey[J]. Computer Networks, 2002,38(4): 393-422.
  • 2ZHANG D M, MA H D, LIU L, et al. EAAR: an approach to envi- ronment adaptive application reconfiguration in sensor network[A]. Proc of the Int'l Conf on Mobile Ad-Hoc and Sensor Networks (MSN 2005)[C]. 2005.259-268.
  • 3MA H D, LILT Y H. Correlation based video processing in video sensor networks[A]. Proc of the IEEE WirelessCom 2005[C]. IEEE Press, 2005.987-992.
  • 4CUCCHIARA R. Multimedia surveillance systems[A]. Proc of the ACM VSSN 2005[C]. New York, 2005. 1-10.
  • 5DEBARDELABEN J A. Multimedia sensor networks for ISR applica- tions[A]. Conference Record of the Thirty-Seventh Asilomar Confer- ence on Signals, Systems and Computers[C]. 2003.2009-2012.
  • 6马华东,陶丹.多媒体传感器网络及其研究进展[J].软件学报,2006,17(9):2013-2028. 被引量:186
  • 7周四望,王耀南,林亚平,胡玉鹏.视觉传感器网络协作块压缩感知图像传输方法[J].仪器仪表学报,2011,32(11):2493-2498. 被引量:6
  • 8MCINTIRE D. Energy benefits of 32-bit Microprocessor Wireless Sensing Systems[R]. Sensoria Corporation White Paper, 2003.
  • 9BULENT T, KEMAL B, RUKEN Z. A survey of visual sensor net- work platforms[J]. Multimedia Tools Application, 2012, 60: 689-726.
  • 10汪涛,崔逊学,李云.基于Stargate的无线视频传感器节点的实现[J].西华大学学报(自然科学版),2009,28(1):25-28. 被引量:2

二级参考文献81

共引文献289

同被引文献43

  • 1马华东,陶丹.多媒体传感器网络及其研究进展[J].软件学报,2006,17(9):2013-2028. 被引量:186
  • 2Chi Ming, Guan Zhihong, Cheng Xinming. Performance Limitations for Networked Control Systems with Plant Uncertainty[J]. International Journal of Systems Science, 2016,47 ( 6 ) : 1358-1365.
  • 3Wang Jianrong, Wang Jianping, He Zhen. Research of Cooperative Communication Network with Both Prefer- ential and Random Attachments [ J ]. Communications in Nonlinear Science and Numerical Simulation, 2016, 31(1-3) :47-59.
  • 4Cucchiara R. Multimedia Surveillance Systems [ C] // Proceedings of the 3rd ACM International Workshop on Video Surveillance and Sensor Networks. New York, USA .. ACM Press .2005: 1-10.
  • 5Li Xiaohua, Chen Xiaohong. Multi-criteria Group Decision Making Based on Trapezoidal Intuitionistic Fuzzy Information [ J ]. Applied Soft Computing, 2015, 30:454-461.
  • 6Liu Manfeng,Ren Haiping. A New Intuitionistic Fuzzy Entropy and Application in Multi-attribute Decision Making [J] Information, 2014,5 ( 4 ) : 587-601.
  • 7Wu Yunna, Liu Chao, Xu Hu, et al. Application of Interval-valued Intuitive Fuzzy Decision-making Method Based on Improved TOPSIS in New Energy Project Priority Selection [ J]. Energy Education Science and Technology Part A : Energy Science and Research,2014, 32(6) :6829-6842.
  • 8Liu Baoding. Random Fuzzy Dependent-chance Programming and Its Hybrid Intelligent Algorithm [J]. Information Sciences, 2002,141 ( 3/4 ) : 259-271.
  • 9Katagiri H, Kato K, Hasuike T. A Random Fuzzy Minimum Spanning Tree Problem Through a Possibility- based Value at Risk Model [J]. Expert Systems with Applications ,2012,39 ( 12 ) : 10639-10646.
  • 10Ye Jun. Expected Value Method for Intuitionistic Trape- zoidal Fuzzy Multicriteria Decision-making Problems [J]. Expert Systems with Applications, 2011,38 (9) : 11730- 11734.

引证文献7

二级引证文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部