期刊文献+

一种改进的共轭梯度法的全局收敛性

The Global Convergence Property Of An Improved Conjugate Gradient Method
下载PDF
导出
摘要 本文给出了一种新的共轭梯度公式βk=rk gk2/ugTk dk-1+dTk-1(gk- gk- 1),该公式在标k-1(gk-gk-1)准Wolfe线搜索下具有充分下降性和全局收敛性. This paper provides a new formula of Conjugate Gradient,βk=rk‖gk‖^2/u|gk^Tdk-1|+dk^T-1(gk- gk- 1), and tformula has abundant descendent property and Global Convergence Property under the standard of Wolfe linear search.
出处 《玉林师范学院学报》 2014年第5期17-20,共4页 Journal of Yulin Normal University
基金 2014年玉林师范学院大学生创新创业训练计划项目(编号:122)
关键词 无约束优化 共轭梯度法 线搜索 全局收敛性 unconstrained optimization conjugates gradient method line search global convergence
  • 相关文献

参考文献12

  • 1Hestenesand M R, Stiefel E L. Methods of conjugate gradient for solving linear systems[J]. J Res Nat Bur Standards Sect, 1952, 49: 409-436.
  • 2Fletcher R, Reeves C. Function minimization by conjugate gradients[J].Compute J, 1964, 7: 149-154.
  • 3Polak E, Ribiere G.. Note sur la convergence de directions conjugees[J]. Rev Francaise Informat Recherche Operationelle, 3e Ann e e, 1969, 16: 35-43.
  • 4Polak B T. The conjugate gradient method in extremem problems [J]. USSR Comp Math and Math Phys, 1969, 9: 94-112.
  • 5Fletcher R. Practical Methods of Optimization, vol 1: Unconstrained Optimization[M]. 2nd edition. New York: Wiley, 1987.
  • 6Liu Y ,Storey C. Efficient Generalized Conjugate Gradient Algorithms, part 1: theory [J]. Journal of Optimization Theory and Application, 1991, 69: 129-137.
  • 7Dai Y H, Yuan Y. A Nonlinear Conjugate Gradient with a Strong Global Convergence Property[J]. SIAM Journal of Optimization,2000,10:177-182.
  • 8Powell M J D. Nonconvex minimization calculations and the conjugate gradient method, in: Lecture Notes in Mathematics vol J [M]. Berlin: Springer-Verlag, 1984:122-141.
  • 9M Al-Baali. Descent property and global convergence of the Fletcher-Reeves method with inexact line search [J]. IMA J. Numer Anal, 1985, 5: 121-124.
  • 10蒙诗德,刘利英,吴庆军,黄宏波.一类新的DY-型共轭梯度法的全局收敛性[J].广西科学,2006,13(4):276-278. 被引量:4

二级参考文献11

  • 1Hestenes, M. and E. Stiefel. Methods of conjugate gradients for solving linear systems[J]. J. Res. Nat. Bur. Standard, 1952,49:409 - 436.
  • 2Fletcher, R., Reeves, C. Function minimization by conjugate gradients[ J 1 ~ Computer Journal, 1964,7 : 149 - 154.
  • 3Polak, E., Ribire, G. Note sur la xonvergence de directions conjugees[ J]. Rev Francaise informat Recherche Operatinelle 3 e A nnee, 1969,16 : 35 - 43.
  • 4Polak, B.T.The conjugate gradient method in extreme problems[J]. USSR Compat. Math. Math. Phys., 1969,9: 94- 112.
  • 5Dai Y.H., Yuan Y. A nonlinear conjugate gradient with a strong global convergence property[J].SIAM Journal of Optimization, 2000,10:177 - 182.
  • 6Zoutendijk, G. Nonlinear Programming, Computational methods. Integer and Nonlinear programming[ M] ( J. Abadie ed. ). Amserdam: North-Holland, 1970,37 - 86.
  • 7Al-Baali, M. Descent property and global convergence of the Fletcher-Reeves method with inexact line search [ J]. IMA J Numer Anal, 1985, (5) : 121-124.
  • 8Zoutendijk, G. Nonlinear Programming, Computational Methods[A]. In:J.Abadie ed, Integer and Nonlinear Programming [ M ]. Amsterdam: North-Holland, 1970,37 - 86.
  • 9戴或红,袁亚湘.非张性共轭梯度法,第一版.上海:上海科学技术出版社,2000,68-69.
  • 10More,J. J., Garbow, B. S., Hillstrome, K. E. Testing unconstrained optimization software[ J ]. ACM Trains. Math. Software, 1981,7:17 - 41.

共引文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部