期刊文献+

基于藤Copula的GAMLSS模型与非寿险准备金评估 被引量:3

Non-life Insurance Claims Reserving Based on Vine Copula and GAMLSS
下载PDF
导出
摘要 在假设各个业务线的增量已决赔款服从伽玛分布、逆高斯分布和对数正态分布的基础上,建立了各个业务线增量已决赔款的GAMLSS模型,并将此模型应用于一组具有明显异方差的车险数据,拟合效果优于均值回归模型.另外,在多个业务线的准备金估计中,不同业务线之间的相依性通过藤Copula函数来描述.用D藤Copula描述相依关系的GAMLSS模型对准备金的评估结果既优于独立假设下的GAMLSS模型和链梯法对准备金的评估结果,同时还刻画了不同业务线之间的尾部相依性. Under the assumption that the incremental paid claims of every line of business follow gamma distribution, inverse-Gaussian distribution and log-normal distribution,respectively,the corresponding GAMLSS models were established. The models were applied to a heteroscedastic data set of auto insurance claims,and the result shows that GAMLSS models are superior to mean regression models in predicting outstanding claim reserve.In practice,different lines of insurance business are,to some extent and their dependence can be captured by Vine Copula functions.The corresponding Vine Copula and GAMLSS models were established.The result shows that D Vine Copula-based GAMLSS model is superior to independent GAMLSS models and Chain Ladder method in claims reserving,and it also describes the tail dependence of different lines of business.
出处 《经济数学》 2014年第4期68-74,共7页 Journal of Quantitative Economics
基金 国家自然科学基金项目(71171193) 教育部重点研究基地重大项目(12JJD790025)
关键词 非寿险 准备金 相依风险 藤Copula GAMLSS模型 non-life insurance reserve dependent risks Vine Copula GAMLSS
  • 相关文献

参考文献16

  • 1R A RIGBY, D M STASINOPOULOS. Generalized additiveApplied Statistics, 2005,54(3) : 507 - 554.
  • 2Yanwei ZHANG. A general multivariate chain ladder model[J]. Insurance: Mathematics &. Economics* 2010,46(3):588 - 599.
  • 3M MERZ, M WUTHRICH. Prediction error of the multivari-ate chain ladder reserving method[J]. North American Actu-arial Journal, 2008,12(2) : 175 - 197.
  • 4C BRAUN. The prediction error of the chain ladder methodapplied to correlated run-off triangles [J]. Astin Bulletin,2004,34(2):399-423.
  • 5K T HEES, K D SCHMIDT, M ZOCHER. Multivariate lossprediction in the multivariate additive model. Insurance:Mathematics &- Economics, 2006,39(2) : 185 - 191.
  • 6Peng SHI,E W FREES. Dependent loss reserving using copu-las[J]. Astin Bulletin, 2011,41(2) : 449 - 486.
  • 7P D JONG. Modeling dependence between loss triangles[J].North American Actuarial Journal, 2012, 16(1) : 74 - 86.
  • 8H JOE. Families of m-variate distributions with given marginsand m(m~ 1)/2 bivariate dependence parameters[R]. Hay-ward: Institute of Mathematical Statistics, 1996.
  • 9T BEDFORD, R M COOKE. Vine-a new graphical model fordependent random variables [J]. Annals of Statistics, 2002,30(4): 1031 - 1068.
  • 10K AAS,C CZADO,A FRIGESSI, et al. Pair-copula con-structions of multiple dependence[j]. Insurance: MathematicsEconomics. 2009, 44(2): 182 - 198.

同被引文献28

  • 1梁冯珍,史道济.基于copula函数的保险准备金的确定方法[J].统计与决策,2006,22(24):142-144. 被引量:5
  • 2MERZ M,WIITHRICH M V.Prediction error of the multivariate chain ladder reserving method[J].North american actuary,2008,12(2):175-197.
  • 3ZHANG Y W.A general multivariate chain ladder model[J].Insurance:mathematics and economics,2010,46(3):588-599.
  • 4SCHMIDT K D.Optimal and additive loss reserving for dependent lines of business[J].Casualty actuarial society forum.2006,100(4):319-351.
  • 5MERZM,WTITHRICH M V.Prediction error of the multivariate additive loss reserving method for dependent lines of business[J].Variance.2009,3(1):131-151.
  • 6JONG P D.Modelling dependence between loss triangles using copulas[J].North American acturial journal,2009,16(1):74-86.
  • 7ZHANG B,Li S.Collateralized debt obligation pricing with an a-stable copula[J].Business computing and global information.SI AM Review,2011,7(4):122-125.
  • 8约翰C.赫尔(John C.Hull).风险管理与金融机构(第三版)[M].北京:机械工业出版社.2012.
  • 9CHOO W D JONG P.Loss reserving using loss aversion functions[J].Insurance,2009,45(2):271-277.
  • 10KELVINK W,YAUKarenCH,YIPH KYUEN.Modellingrepeatedinsuranceclaimfrequencydatausingthegeneralizedlinearmixedmodel[J].JournalofAppliedStatistics,2003,30(8):857-865.

引证文献3

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部