期刊文献+

空间梁单元切线刚度矩阵的精确分析方法 被引量:1

Accurate Analysis Method on Tangent Stiffness Matrix for Space Beam Element
下载PDF
导出
摘要 为有效进行空间刚架结构后屈曲分析,提出一种新的空间梁单元切线刚度矩阵的精确分析方法。首先用直接法建立梁单元杆端力与杆端位移的增量关系式,然后根据矩阵微分理论求出单元杆端力关于杆端位移的导数,在求导结果表达式中令杆端位移增量为0,即可得到梁单元切线刚度矩阵。对六层和二十层空间刚架结构进行了后屈曲分析。结果表明:所得的空间梁单元切线刚度矩阵具有足够精度,可有效用于大型空间刚架结构的后屈曲分析。 In order to effectively conduct the post‐buckling analysis for space frame , a new accurate analysis method for the tangent stiffness matrix of space beam element was proposed . Firstly ,the incremental force and displacement of the member ends for space beam element was established using direct equilibrium method ,and then derivation of the member‐end force was determined with regard to the member‐end displacement according to the matrix differentiation theory and the increment of member‐end displacement of the derivation expression was set equal to zero ,so that the tangent stiffness matrix for space beam element was obtained .The post‐buckling analyses for a six‐storey space frame and a twenty‐storey frame were done .The results show that the present tangent stiffness matrix for space beam element has enough precision ,and can be applied to the post‐buckling analysis for large space frame .
作者 刘树堂
出处 《建筑科学与工程学报》 CAS 北大核心 2014年第4期135-142,共8页 Journal of Architecture and Civil Engineering
关键词 空间梁单元 切线刚度矩阵 空间刚架 非线性屈曲 弹塑性屈曲 space beam element tangent stiffness matrix space frame nonlinear buckling elas-toplastic buckling
  • 相关文献

参考文献13

  • 1GU J X,CHAN S L. New Tangent Stiffness Matrix for Geometrically Nonlinear Analysis of Space Frames [J~. Journal of Southeast University: English Edition,2005,21(4):480-485.
  • 2陈常松,陈政清,颜东煌.势能增量驻值原理与切线刚度矩阵的解构规则[J].中南大学学报(自然科学版),2005,36(5):892-898. 被引量:5
  • 3陈昕,王娜.空间梁单元的切线刚度矩阵[J].哈尔滨建筑工程学院学报,1993,26(3):24-29. 被引量:9
  • 4YANG Y B, LIN S P,CHEN C S. Rigid Body Con- cept ~or Geometric Nonlinear Analysis of 3D Frames, Plates and Shells Based on the Updated Lagrangian Formulation[-J~. Computer Methods in Applied Me- chanics and Engineering,2007,196(7) :1178 1192.
  • 5陈军明,吴代华.三维梁单元的弹塑性切线刚度矩阵[J].华中理工大学学报,2000,28(2):111-113. 被引量:5
  • 6朱文,周水兴.空间梁单元显式切线刚度矩阵推导[J].公路交通技术,2008,24(5):40-49. 被引量:2
  • 7KIM S,RYU J ,CHO M. Numerically Generated Tan- gent Stiffness Matrices Using the Complex Variable Derivative Method for Nonlinear Structural Analysis [J]. Computer Methods in Applied Mechanics and Engineering, 2011,200 ( 1/2/3/4) = 403-413.
  • 8ORAN C. Tangent Stiffness in Space Frames[J~. Journal o{ the Structural Division, 1973,99 (6) : 973- 985.
  • 9KASSIMALI A, ABBASNIA R. Large Deformation Analysis of Elastic Space Frames [J]. Journal of Structural Engineering, 1991,117(7) :2069-2087.
  • 10JIANG X M,CHEN H,LIEW J Y R. Spread-of-plas- ticity Analysis of Three-dimensional Steel Frames~J~. Journal of Constructional Steel Research, 2002, 58 (2) :193-212.

二级参考文献24

  • 1周水兴,陈山林.MatLab在有限元刚度矩阵推导中的应用[J].重庆交通学院学报,2007,26(2):29-31. 被引量:4
  • 2鹫津久一郎.弹性和塑性力学中的变分法[M].科学出版社,1984..
  • 3陈军明,博士学位论文,2000年
  • 4姜晋庆,结构弹塑性有限元分析法,1990年
  • 5龚尧南,结构分析中的非线性有限元素法,1986年
  • 6Mattiasson K, Bengtsson A, Samuelesson A. On the accuracy and efficiency of numerical algorithms for geometrically nonlinear structural analysis[A]. Proceeding of the Europe-US symposium[C]. Trondheim Norway: the Norwegain Institute of Technology, 1985.
  • 7普齐米尼斯其JS.矩阵结构分析理论[M].北京:国防工业出版社,1975..
  • 8曾庆元.形成矩阵的"对号入座"法则与桁段有限元法[J].铁道学报,1986,2(18):61-68.
  • 9Kim S E,Park M H,Choi S H.Direct design of threedimensional frames using practical advanced analysis[J].Engineering Structures,2001,23(11):1491~1502.
  • 10Liew J Y R,Chen H,Shanmugam N E,Chen W F.Improved nonlinear plastic hinge analysis of space frame structures[J].Eng.Struct,2000,22(10):1324~1338.

共引文献31

同被引文献9

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部