期刊文献+

基于RBF和模糊预测的AGV轨迹跟踪控制 被引量:1

AGV Tracking Control Based on RBF and Fuzzy Predictive Control
下载PDF
导出
摘要 针对AGV系统存在初始位姿误差,而且给定轨迹又不连续时,应用传统的轨迹跟踪控制方法,就会使其初始速度产生较大跳变的问题,基于径向基函数(RBF)神经网络的非线性动态系统在线建模,将模糊控制技术与预测控制技术相结合,提出基于反演(Backstepping)方法的速度控制器和基于RBF的模糊预测转矩控制器,实施AGV路径跟随和轨迹跟踪控制.仿真和实验结果表明,设计的速度控制器和转矩控制器使AGV系统不仅有较好的动态性能,而且具有较强的鲁棒性. Initial position error exists in AGV system.When the reference trajectory is not a larger initial velocity jump continuous for AGV system,the adoption of traditional fuzzy trajectory tracking control will lead to a larger initial velocity jump.Based on the radial basis function (RBF)neural network modeling of nonlinear dynamic system online,the fuzzy control technology and the predictive control technologies are combined to establish a backstepping speed controller and an RBF torque fuzzy predictive controller,which implement the control of AGV path and trajectory tracking.It is shown through simulation and experimental results that the proposed speed controller and torque controller not only have better dynamic performances,but also have strong robust-ness.
作者 吕宁
出处 《昆明理工大学学报(自然科学版)》 CAS 北大核心 2014年第6期57-62,共6页 Journal of Kunming University of Science and Technology(Natural Science)
基金 云南省自然科学基金项目(2003F0029M)
关键词 自动导引小车 轨迹跟踪 模糊预测控制 径向基(RBF)神经网络 automatic guided vehicle trajectory tracking fuzzy predictive control RBF neural network
  • 相关文献

参考文献8

  • 1Liu J H,Wang Q Q,He R.A survey of automated guided methods[C]//24th Chinese Control and Decision Conference(CCDC 2012),2012:3459-3462.
  • 2Antal D,Szabo T.Controlling and modeling of an automated guided vehicle[C]//13th International Carpathian Control Conference(ICCC 2012),2012:1-6.
  • 3Brockett R W.Asymptotic Stability and Feedback Stabilization:Differential Geometric Control Theory[M].Bosten,USA:Birkhauser,1983:181-191.
  • 4Sharma K D,Chatterjee A,Rakshit A.A PSO–Lyapunov Hybrid Stable Adaptive Fuzzy Tracking Control Approach for Vision-Based Robot Navigation[J].IEEE Transactions on Instrumentation and Measurement,2012,61(7):1908–1914.
  • 5吕宁.AGV建模和自适应模糊滑模跟踪控制研究[J].昆明理工大学学报(自然科学版),2012,37(5):35-42. 被引量:5
  • 6俞其江,刘士荣.基于改进RBFNN与滑模控制的移动机器人跟踪控制[C]//2006年中国控制与决策学术年会论文集.2006:1347-1354.
  • 7刘金琨.智能控制[M].2版.北京:电子工业出版社,2010:102-135.
  • 8Zhan Y D,Guo Y G,Zhu J G.Intelligent coordination steering control of automated guided vehicle[C]//2011 International Conference on Applied Superconductivity and Electromagnetic Devices.2011:204-207.

二级参考文献8

  • 1张立明,王振宇,王翊,詹跃东.基于视觉的AGV两轮差速转向模糊控制[J].昆明理工大学学报(理工版),2007,32(4):28-32. 被引量:5
  • 2Liu J H, Wang Q Q, He R. A survey of automated guided methods [C]//24h Chinese Control and Decision Conference ( CCDC 2012), 2012:3459 - 3462.
  • 3Antal D, Szabo T. Controlling and modeling of an automated guided vehicle [C]// 13^th International Carpathian Control Conference (ICCC 2012), 2012:1 -6.
  • 4Sharma K D, Chatterjee A, Rakshit A. A PSO - Lyapunov Hybrid Stable Adaptive Fuzzy Tracking Control Approach for Vision- Based Robot Navigation [J]. IEEE Transactions on Instrumentation and Measurement, 2012, 61(7) : 1908 - 1914.
  • 5Tong S C, Li H X. Fuzzy adaptive sliding - mode control for MIMO systems [ J ]. IEEE Transaction on Fuzzy Systems, 2003, 11(3) : 315 - 322.
  • 6Hidaka K. Holonomic Automated Guided Vehicle Control Based on Adaptive Inverse Dynamics Control [ C ]//2008 International Conference on Control, Automation and Systems, 2008:2715 - 2718.
  • 7刘金琨.智能控制[M].2版.北京:电子工业出版社,2010:102-135.
  • 8Zhan Y D, Guo Y G, Zhu J G. Intelligent coordination steering control of automated guided vehicle [ C]//2011 International Conference on Applied Superconductivity and Electromagnetic Devices (ASEMD), 2011 : 204 -207.

共引文献5

同被引文献5

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部