摘要
针对同一非线性过程数据,分别应用多元统计过程监控技术中的主元分析(Principal Component Analysis,PCA)、独立元分析(Independent Component Analysis,ICA)和核独立元分析(Kernel Independent Component Analysis,KICA)三种方法进行了故障检测建模,并进行了仿真比较研究。通过田纳西-伊斯曼过程(Tennessee Eastman Process,TE)仿真结果表明:在处理实际工业生产中非线性、非高斯的数据方面,KICA方法具有更强的故障监测能力。
Under the identical nonlinear-data conditions, three multivariate statistical process methods-PCA, ICA and KICA are used to monitor the fault detection to compare their difference through simulation. For the characteristics of sample data, three different methods have their own characteristics. By using Tennessee Eastman process, the simulation results indicate that KICA method is superior to the other two methods because it can deal well with the actual industrial processes whose sample data are nonlinear and non-Gaussian.
出处
《北京信息科技大学学报(自然科学版)》
2014年第5期56-61,66,共7页
Journal of Beijing Information Science and Technology University
基金
国家自然科学基金自助项目(61273173)
北京市自然科学基金资助项目(61273173)
关键词
非线性过程
故障检测
主元分析
独立元分析
核独立元分析
nonlinear process
fault detection
principal component analysis
independentcomponent analysis
kernel independent component analysis