期刊文献+

数据驱动PCA、ICA和KICA故障检测仿真比较 被引量:5

Simulation comparisons among PCA,ICA and KICA fault detection based on data-driven
下载PDF
导出
摘要 针对同一非线性过程数据,分别应用多元统计过程监控技术中的主元分析(Principal Component Analysis,PCA)、独立元分析(Independent Component Analysis,ICA)和核独立元分析(Kernel Independent Component Analysis,KICA)三种方法进行了故障检测建模,并进行了仿真比较研究。通过田纳西-伊斯曼过程(Tennessee Eastman Process,TE)仿真结果表明:在处理实际工业生产中非线性、非高斯的数据方面,KICA方法具有更强的故障监测能力。 Under the identical nonlinear-data conditions, three multivariate statistical process methods-PCA, ICA and KICA are used to monitor the fault detection to compare their difference through simulation. For the characteristics of sample data, three different methods have their own characteristics. By using Tennessee Eastman process, the simulation results indicate that KICA method is superior to the other two methods because it can deal well with the actual industrial processes whose sample data are nonlinear and non-Gaussian.
作者 张宵 马洁
出处 《北京信息科技大学学报(自然科学版)》 2014年第5期56-61,66,共7页 Journal of Beijing Information Science and Technology University
基金 国家自然科学基金自助项目(61273173) 北京市自然科学基金资助项目(61273173)
关键词 非线性过程 故障检测 主元分析 独立元分析 核独立元分析 nonlinear process fault detection principal component analysis independentcomponent analysis kernel independent component analysis
  • 相关文献

参考文献16

  • 1Nimmo I.Adequately address abnormal,operations[J].Chemical Engineering Progress,1995,91(9):36-45.
  • 2Kennedy J,Eberhart R.Particle swarm optimization[C]//IEEE Int Conf on Neural Networks.Perth,1995:1942-1948.
  • 3Kano.M,Tanaka.S,Hasebe.S.Monitoring independent components for fault detection[J].AIChE Journal,2003,49(4):969-976.
  • 4王莹.基于改进KICA的故障检测方法在连续采煤机上的应用研究[D].沈阳:东北大学,2008.
  • 5Bach F R,Jordan M I.Kernel independent component analysis[J].J Mach Learn Res(SI 532-4435),2002,3(7):1-48.
  • 6赵忠盖,刘飞.一种基于核独立元分析的非线性过程监控方法[J].系统仿真学报,2008,20(20):5585-5588. 被引量:5
  • 7扈书亮,韩淼.基于ICA过程监控方法的研究[J].实验室科学,2010,13(2):82-84. 被引量:1
  • 8Hyvarinen A.Fast and robust fixed-point algorithms for independent component analysis[J]//IEEE Transactions on Neural Networks(S1045-9227),1999,10(3):622-634.
  • 9Keller J Y,Darouach M,Krzakala G.Fault detection of multiple biases process leaks in linear steady state systems[J].Computer and Chemical Engineering,1994,18(10)-1001-1004.
  • 10付若玮,宋执环.基于核独立成分分析的过程故障检测方法[C].全国第19届计算机技术与应用学术会议(CACIS·2008)论文集,北京:中国科学技术大学出版社,2008:528-533.

二级参考文献22

  • 1李钢,秦泗钊,周东华.基于多尺度PCA的工业过程故障预测[J].华中科技大学学报(自然科学版),2009,37(S1):32-35. 被引量:4
  • 2王海清,蒋宁.主元空间中的故障重构方法研究[J].化工学报,2004,55(8):1291-1295. 被引量:5
  • 3Kourti Thedora. Application of latent variable methods to process control and multivariate statistical process control in industry [J]. International Journal of Adaptive control and Signal Processing (S0890-6327), 2005, 19(4): 213-246.
  • 4Martin E B, Morris A J. Non-parametric confidence bounds for process performance monitoring charts [J]. Journal of Process Control (S0959-1524), 1996, 6(6): 349-358.
  • 5Lee Jong-Min, Yoo Chang-Kyoo, Lee ln-Beum. Statistical process monitoring with independent component analysis [J]. Journal of Process Control (S0959-1524), 2004, 14(5): 467-485.
  • 6Bach F R, Jordan M I. Kernel independent component analysis [J]. J. Mach. Learn. Res (S1532-4435), 2002, 3(7): 1-48.
  • 7Yang Jian, Gao Xiumei, et al. Kernel ICA: an alternative formulation and its application to face recognition [J]. Pattern Recognition (S0031-3203), 2005, 38(10): 1784-1787.
  • 8Michael E Tipping. Sparse kernel principal component analysis [M]// Advances in Neural Information Processing Systems (NIPS) 13. Cambridge, MA, USA: MIT Press, 2000.
  • 9Hyvarinen Aapo. Fast and robust fixed-point algorithms for independent component analysis [J]. IEEE Trans. on Neural Networks (S1045-9227), 1999, 10(3): 626-634.
  • 10Lee Jong-Min, Yoo ChangKyoo, Lee In-Beum. Fault detection of batch processes using multiway kernel principal component analysis. [J]. Computers and Chemical Engineering (S0098-1354), 2004, 28(9): 1837-1847.

共引文献11

同被引文献39

  • 1Uckun S,Goebel K,Lucas P.Standardizing research methods for prognostics[C].Prognostics Health Manage,CO,USA,2008:1-10.
  • 2Thomhill N F,Shah S L,Huang B,et al.Spectral principal component analysis of dynamic process data[J].Control Engineering Practice,2002,10(8):833-846.
  • 3Kruger U,Kumar S,Littler T.Improved principal component monitoring using the local approach[J].Automatic.2007,43(9):1532-1542.
  • 4Lee J M,Qin S J,Lee I B.Fault detection of non-linear processes using kernel independent component analysis[J].Canadian Journal of Chemical Engineering,2007,85(4):526-536.
  • 5Wang Ying,Wang Wen-bin,Fang Shufen.Research on a model of the residual life prediction for condition-based maintenance[J].Management Science and Engineering,2006,10:536-539.
  • 6Feng Xue,Piero Bonissone,Anil Varma.An instance-based method for remaining useful life estimation for aircraft engines[J].Journal of Failure Analysis and Prevention,2008,8(2):199-206.
  • 7Kamran Javed,Rafael Gouriveau,Noureddine Zerhouni.Novel failure prognostics approach with dynamic thresholds for machine degradation[C].Industrial Electronics Society,IECON 2013-39th Annual Conference of the IEEE,Austria,2013:4404-4409.
  • 8王培良,葛志强,宋执环.基于迭代多模型ICA-SVDD的间歇过程故障在线监测[J].仪器仪表学报,2009,30(7):1347-1352. 被引量:12
  • 9王玉静,宋立新,康守强.基于EMD和奇异值分解的心律失常分类方法[J].信号处理,2010,26(9):1423-1427. 被引量:9
  • 10程正东,章毓晋,樊祥,朱斌.常用Fisher判别函数的判别矩阵研究[J].自动化学报,2010,36(10):1361-1370. 被引量:20

引证文献5

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部