期刊文献+

无序蛋白质的判定及其结构、功能和进化特征 被引量:6

The Identification of Intrinsically Disordered Proteins and Their Structural, Functional, Evolutionary Features
下载PDF
导出
摘要 固有无序蛋白质(intrinsically disordered proteins,IDPs)是天然条件下自身不能折叠为明确唯一的空间结构,却具有生物学功能的一类新发现的蛋白质.这类蛋白质的发现是对传统的"结构-功能"关系认识模式的挑战.本文首先总结了无序蛋白质的实验鉴定手段、预测方法、数据库;并介绍了无序蛋白质结构(包括一级结构、二级结构、结构域无序性及变构效应)和功能特征;然后重点总结了无序蛋白质在进化角度研究的进展,包括无序区域产生的进化机制、进化速率,蛋白无序性的进化在蛋白质功能进化及生物学复杂性增加等方面的重要作用;最后展望了无序蛋白质在医药方面的应用前景.本文对于深入认识无序蛋白质的形成机制、结构和功能特征及其潜在的临床应用前景具有重要意义. Intrinsically disordered proteins(IDPs) do not shape into a stable and well-structured three-dimensional fold, while they are biologically active. The discovery of IDPs is in contradiction to the traditional "structure-function" relationship. In this review, the experimental and computational methods for the identification of IDPs, and the corresponding databases were summarized. Then, we introduce the structural features(including primary structure, secondary structure, disorder of protein domain and the allosteric effect) and functional features of IDPs. We also specially focused on the evolutionary researches of IDPs. The evolutionary mechanisms of the formation of IDPs and the evolutionary rates of disordered regions were described. And the important roles of IDPs' evolution in the evolution of biological function and the increasing of biological complexity were summarized. Finally, we discussed the prospects of IDPs in medical applications. This review is of great significance for the further understanding of IDPs' formation mechanism, structural and functional characteristics and their potential prospects in clinical application.
出处 《生物化学与生物物理进展》 SCIE CAS CSCD 北大核心 2015年第1期16-24,共9页 Progress In Biochemistry and Biophysics
基金 国家国际科技合作专项(2014DFB30020) 国家重大科学研究计划(2014CBA02001)资助项目~~
关键词 固有无序蛋白质 序列 结构 功能 进化 intrinsically disordered proteins sequence structure function evolution
  • 相关文献

参考文献3

二级参考文献116

  • 1Wolf, M.Y., Wolf, Y.I., and Koonin, E.V. (2008). Comparable contributions of structural-functional constraints and expression level to the rate of protein sequence evolution. Biol. Direct. 3: 40.
  • 2Wolf, Y.I., Carmel, L., and Koonin, E.V. (2006). Unifying measures of gene function and evolution. Proc. Biol. Sci. 273:1507-1515.
  • 3Wright, S.I., Yah, C.B., Looseley, M., and Meyers, B.C. (2004). Effects of gene expression on molecular evolution in Arabidopsis thaliana andArabidopsis lyrata. Mol. Biol. Evol. 21: 1719-1726.
  • 4Zuekerkandl, E. (1976). Evolutionary processes and evolutionary noise at the molecular level (Ⅰ): Functional density in proteins. J. Mol. Evol. 7: 167-183.
  • 5Akashi, H. (1994). Synonymous codon usage in Drosophila melanogaster Natural selection and translational accuracy. Genetics 136: 927-935.
  • 6Akashi, H., and Gojobori, T. (2002). Metabolic efficiency and amino acid composition in the proteomes of Escherichia coli and Bacillus subtilis. Proc. Natl. Acad. Sci. USA 99: 3695-3700.
  • 7Bloom, J.D., and Adami, C. (2003). Apparent dependence of protein evolution rate on number of interactions is linked to biases in protein-protein interactions data sets. BMC Evol. Biol. 3: 21.
  • 8Bulmer, M. (1987). Coevolution of codon usage and transfer RNA abundance. Nature 325: 728-730.
  • 9Choi, J.K., Kim, S.C., Seo, J., Kim, S., and Bhak, J. (2007). Impact of transcriptional properties on essentiality and evolution rate. Genetics 175: 199-206.
  • 10Coghlan, A., and Wolfe, K.H. (2000). Relationship of codon bias to mRNA concentration and protein length in Saccharomyces cerevisiae. Yeast 16: 1131-1145.

共引文献18

同被引文献33

引证文献6

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部