期刊文献+

一种基于SSED的无规则噪声组织的去除方法

Segmentation Algorithm for Irregular Noise Tissue Based on Sequential Signed Euclidean Distance Transform
下载PDF
导出
摘要 目的:在医学图像处理领域,往往会由于方案设计、算法选取等原因而产生大量的不规则的噪声组织。本文通过研究分析噪声组织形态特征,提出了一种新的快速去除噪声组织的方法,为医学图像处理的噪声组织去除领域提供一种全新的思路。方法:本文首次将距离映射应用到噪声组织去除领域,利用有符号串行欧氏距离映射(Signed Sequence Euclidean Distance Mapping,简称SSED)对图像进行距离映射计算,通过对距离映射图像进行适当的阈值化处理,实现了快速识别、去除各种不规则的噪声组织,与此同时确保了感兴趣目标区域的完整。结果:本方法已通过对12组临床心脏CT序列的实际测试,快速准确的去除了图像中存在的各种不规则的噪声组织,同时实现了对感兴趣目标区域的平滑。结论:该方法去除精度高、去除效率优于现有的形态学和骨架提取等各类方法,为临床医生的诊断提供了清晰且精确的辅助,大大提高了无规则噪声组织去除的效率和鲁棒性。 Objective In the field of medical image processing, there often remains much irregular noise tissue due to the projectdesign, the algorithm or other reasons. By studying morphological features of irregular noise tissue, we propose a new methodto quickly remove noise tissue and provide a tesh idea for noise removal field. Methods In this paper, we, for the first time,apply distance mapping to the field of noise tissue removal. The use of signed sequence Euclidean distance transform (SSED)enables fast identification and removal of various irregular noise tissue, while simultaneously ensures the complete target regionof interest. Results Our method has been tested by 12 groups of actual clinical cardiac CT sequences, and it segments fast andaccurately, at the same time smooths the edge of region of interest. Conclusion The method is more precise and effective thanother methods like morphology and skeleton extraction, and it provides a well assistance for the diagnosis of clinicians as wellas greatly improves the efficiency and robustness of irregular noise tissue segmentation.
作者 张硕 袁克虹
出处 《中国医学物理学杂志》 CSCD 2015年第1期48-50,56,共4页 Chinese Journal of Medical Physics
基金 广东省科技计划项目(2011B050500006) 院交叉基金(JC2014-0001)
关键词 噪声组织 SSED 形态学 医学图像 noise tissue SSED morphology medical image
  • 相关文献

参考文献10

  • 1Gonzalez RC. Woods. Digitial Image Processing, Third Edition. Bei- jing: Publishing House of Electronics Industry[M]. 2011.
  • 2Haralick RM, Steinberg SR, Zhuang X. Image analysis using mathe- matical morphology [J]. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 1987, (4): 532-550.
  • 3李川,彭甫镕,陆建峰.基于距离场细化的骨架提取算法[J].微电子学与计算机,2011,28(10):114-117. 被引量:6
  • 4Pai TW, Hansen JHL. Botmdary constrained morphological skeleton minimization and skeleton reconstruction[J]. Pattern Analysis and Ma- chine Intelligence, IEEE Transactions on, 1994, 16(2): 201-208.
  • 5Maragos P, Schafer RW. Morphological skeleton representation and coding of binary images [J]. Acoustics, Speech and Signal Processing, IEEE Transactions on, 1986, 34(5): 1228-1244.
  • 6钟孟儿,冯华君,裴锡宇,徐之海.在复杂背景下线状物体的图像分割算法研究[J].光学仪器,2005,27(1):52-56. 被引量:2
  • 7倪维平,徐刚锋,李飚,王平.基于正交投影特性的带状目标检测[J].红外与激光工程,2007,36(3):407-411. 被引量:4
  • 8王萍,冯卫家,屈展,解以扬,贾惠珍.一种复杂背景下非规则带状区域的分割算法[J].天津大学学报,2012,45(2):135-139. 被引量:3
  • 9PER-ERIK DANIELSSON. Euclidean distance mapping [J]. Comput- er Graphics and Image Processing, 1980, 14: 227-248.
  • 10Ye QZ. The signed Euclidean distance transform and its applications [C]. Pattern Recognition, 1988, 9th International Conference on. IEEE, 1988: 495-499.

二级参考文献29

  • 1鲍复民,李爱国,覃征.合成孔径雷达图像中机场跑道的自动识别[J].西安交通大学学报,2004,38(12):1243-1246. 被引量:11
  • 2钟孟儿,冯华君,裴锡宇,徐之海.在复杂背景下线状物体的图像分割算法研究[J].光学仪器,2005,27(1):52-56. 被引量:2
  • 3王鹏,周昕,王勇,杨宏坤,李大海.哈特曼波前传感器光斑质心探测窗口的自动确定方法研究[J].激光杂志,2005,26(5):46-47. 被引量:7
  • 4赵荣椿.数字图像处理导论[M].西安:西北工业大学出版社,1995..
  • 5Harry Blum. Models for the perception of speech and visual Form [M]. Cambridge; Weiant Wathen - Dunn, 1967.
  • 6Blum H. Biological shape and visual science: part I[J]. Journal of Theoretical Biology, 1973,38(2) : 205- 287.
  • 7李川.斑马鱼胚胎图像的检索技术研究[D].南京:南京理工大学,2011.
  • 8Bai Xiang, Liu WenYu. Skeleton pruning by contour partitioning with discrete curve evolution[J]. IEEE Transactions on Pattern Analysis And Machine Intelligenc, 2007,29(3) : 449-486.
  • 9Wang Shilin, Lau Wing-Hong, Liew Alan Wee-Chung, et al. Robust lip region segmentation for lip images with complex background[J]. Pattern Recognition, 2007, 40(12): 3481-3491.
  • 10Kass M, Witkin A, Terzopoulos D. Snakes: Active contour models [J], International Journal of Computer Vision, 1988, 1 (4) : 321-331.

共引文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部