期刊文献+

大数据时代的疾病样本库 被引量:7

Biobank in the age of big data
原文传递
导出
摘要 大数据时代,研究者更关注样本的生物信息数据与疾病临床信息的相关性,通过大样本的关联分析,来预测疾病的发生、发展与转归。疾病样本库便是关联疾病临床信息与样本生物学信息的桥梁与核心,相关信息的数量多少和多样性,尤其是样本及其信息的质量和标准化程度,将决定并影响大数据预测的结果。因此,建立疾病样本库的质量管理制度、确立相关质量检测的方法以及实现样本库质量的持续改进是疾病研究的迫切需求。 In big data era, researchers pay more attention to the correlation between biological information of patient samples and related clinical information of diseases. The large volume correlation analysis will help predict the initiation, development and outcome for specific diseases. Disease-related biobank is the core facility bridging the gap between the clinical information and biological information of the disease. The volume, diversity, and especially the quality, and standardization of sample and sample-related information will influence the outcome of big data prediction. Therefore, the establishment of quality management system, and implement of standard inspection and test method are very urgent for continuous improvement of biobanks.
出处 《中华胃肠外科杂志》 CAS CSCD 北大核心 2015年第1期6-8,共3页 Chinese Journal of Gastrointestinal Surgery
关键词 生物样本库 疾病 质量管理 Biobank Disease Quality management
  • 相关文献

参考文献4

  • 1Raghupathi W, Raghupathi V. Big data analytics in healthcare: promise and potential[J]. Health Inform Sci Syst, 2014,2:3.
  • 2De Souza YG, Greenspan JS. Biobanking past, present and future : responsibilities and benefits [J]. AIDS, 2013,27 : 303- 312.
  • 3Betsou F, Lehmann S, Ashton G, et al; International Society for Biological and Environmental Repositories(ISBER) Working Group on Biospecimen Science. Standard preanalytical coding for biospeeimens: defining the sample PREanalytieal code [J].Cancer Epidemiol Biomarkers Prev, 2010,19: 1004-1011.
  • 4Harris JR, Burton P, Knoppers BM, et al. Toward a roadmap in global biobanking for health [J]. Eur J Hum Genet, 2012, 20:1105-1111.

同被引文献43

引证文献7

二级引证文献34

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部