期刊文献+

The Impact of AIRS Atmospheric Temperature and Moisture Profiles on Hurricane Forecasts: Ike(2008) and Irene(2011) 被引量:3

The Impact of AIRS Atmospheric Temperature and Moisture Profiles on Hurricane Forecasts: Ike(2008) and Irene(2011)
下载PDF
导出
摘要 Atmospheric InfraRed Sounder (AIRS) measurements are a valuable supplement to current observational data,especially over the oceans where conventional data are sparse.In this study,two types of AIRS-retrieved temperature and moisture profiles,the AIRS Science Team product (SciSup) and the single field-of-view (SFOV) research product,were evaluated with European Centre for Medium-Range Weather Forecasts (ECMWF) analysis data over the Atlantic Ocean during Hurricane Ike (2008) and Hurricane Irene (2011).The evaluation results showed that both types of AIRS profiles agreed well with the ECMWF analysis,especially between 200 hPa and 700 hPa.The average standard deviation of both temperature profiles was approximately 1 K under 200 hPa,where the mean AIRS temperature profile from the AIRS SciSup retrievals was slightly colder than that from the AIRS SFOV retrievals.The mean SciSup moisture profile was slightly drier than that from the SFOV in the mid troposphere.A series of data assimilation and forecast experiments was then conducted with the Advanced Research version of the Weather Research and Forecasting (WRF) model and its three-dimensional variational (3DVAR) data assimilation system for hurricanes Ike and Irene.The results showed an improvement in the hurricane track due to the assimilation of AIRS clear-sky temperature profiles in the hurricane environment.In terms of total precipitable water and rainfall forecasts,the hurricane moisture environment was found to be affected by the AIRS sounding assimilation.Meanwhile,improving hurricane intensity forecasts through assimilating AIRS profiles remains a challenge for further study. Atmospheric InfraRed Sounder (AIRS) measurements are a valuable supplement to current observational data,especially over the oceans where conventional data are sparse.In this study,two types of AIRS-retrieved temperature and moisture profiles,the AIRS Science Team product (SciSup) and the single field-of-view (SFOV) research product,were evaluated with European Centre for Medium-Range Weather Forecasts (ECMWF) analysis data over the Atlantic Ocean during Hurricane Ike (2008) and Hurricane Irene (2011).The evaluation results showed that both types of AIRS profiles agreed well with the ECMWF analysis,especially between 200 hPa and 700 hPa.The average standard deviation of both temperature profiles was approximately 1 K under 200 hPa,where the mean AIRS temperature profile from the AIRS SciSup retrievals was slightly colder than that from the AIRS SFOV retrievals.The mean SciSup moisture profile was slightly drier than that from the SFOV in the mid troposphere.A series of data assimilation and forecast experiments was then conducted with the Advanced Research version of the Weather Research and Forecasting (WRF) model and its three-dimensional variational (3DVAR) data assimilation system for hurricanes Ike and Irene.The results showed an improvement in the hurricane track due to the assimilation of AIRS clear-sky temperature profiles in the hurricane environment.In terms of total precipitable water and rainfall forecasts,the hurricane moisture environment was found to be affected by the AIRS sounding assimilation.Meanwhile,improving hurricane intensity forecasts through assimilating AIRS profiles remains a challenge for further study.
出处 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2015年第3期319-335,共17页 大气科学进展(英文版)
基金 supported by the National Natural Science Foundation of China (Grant No. 41305089) the National Oceanic and Atmospheric Administration (Grant No. NA10NES4400013) the Public Industry-specific Fund for Meteorology (Grant No. GYHY201406011)
关键词 AIRS data assimilation temperature profile moisture profile hurricane forecast WRF 3DVAR AIRS data assimilation temperature profile moisture profile hurricane forecast WRF 3DVAR
  • 相关文献

共引文献3

同被引文献10

引证文献3

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部