期刊文献+

加权闵可夫斯基K-Means的指数选取策略 被引量:4

Selection of the Minkowski Exponent for MWK-Means
下载PDF
导出
摘要 与传统K-Means相比,加权闵可夫斯基K-Means(MWK-Means)需要自适应获取特征权重并选择合适的闵可夫斯基指数.无监督选取指数策略是计算每个指数的三种尺度值,根据三种尺度的选取标准得到各自最好的指数,然后选取较接近的两个指数求均值.在这种策略的启发下,提出了基于排名的闵可夫斯基指数选取策略,将三种尺度的值分别进行排名,每个指数通过选取两个较接近的排名相加得到综合排名来确定指数.用这两种指数选取策略分别对UCI数据集进行实验,结果表明,基于排名的选取策略较优. Compared to the traditional K-Means, the MWK-Means needs to obtain feature weights adaptively and select suitable exponent. Choosing the Minkowski exponent in an unsupervised setting is a way to calculate three-scale values of each exponent. It gets the best of each exponent based on the selection criteria of three scales, and then gets the mean of two closer exponents. According to this strategy, we put forward a new strategy of selecting the Minkowski exponent based on ranking, ranked the values of three scales each. Then, we added the two closer rankings of each exponent as comprehensive rank and used them to determine the final exponent. This paper used the above two strategies of selecting Minkowski exponent to test UCI dataset. The result shows that the new strategy is better.
出处 《计算机系统应用》 2015年第2期151-154,共4页 Computer Systems & Applications
关键词 聚类 闵可夫斯基指数 无监督 排名 MWK-Means clustering Minkowski exponent unsupervised ranking MWK-Means
  • 相关文献

参考文献11

  • 1Rui X, Donald WII. Survey of custering algorithms. IEEE Trans. on Neural Networks, 2005, 16(3): 645--678.
  • 2HanJW,KamberM.范明,孟小峰译擞据挖掘:概念与技术第2版.北京:机械工业出版社,2007.
  • 3周杨,苗夺谦,岳晓冬.基于自适应权重的粗糙K均值聚类算法[J].计算机科学,2011,38(6):237-241. 被引量:12
  • 4Anil KJ. Data clustering: 50 years beyond K-means. Pattern Recognition Letters, 2010, 31 (8): 651-666.
  • 5王留正,何振峰.基于全局性分裂算子的进化K-means算法[J].计算机应用,2012,32(11):3005-3008. 被引量:3
  • 6Renato CDA, Boris M. Minkowski metric, feature weighting and anomalous cluster initializing in K-Means clustering. Pattern Recognition, 2012, 45(3): 1061-1075.
  • 7Renato CDA. Constrained clustering with Minkowski weighted K-Means. 13th IEEE International Symposium on Computational Intelligence and Informatics. 2012. 13-17.
  • 8Renato CDA, Peter K. On initializations for the Minkowski weighted K-Means. Advances in intelligent Data Analysis XI Lecture Notes in Computer Science, 2012, 7619: 45-55.
  • 9Chan EY, et al. An optimization algorithm for clustelg using weighted dissimilarity measures. Pattern Recognition, 2004, 37(5): 943-952.
  • 10Huang JZ, Ng MK, Rong H, Li Z. Automated variable weighting in k-means type clustering. IEEE Trans. on Pattern Analysis and Machine Intelligence, 2005, 27(5): 657-668.

二级参考文献32

  • 1Xu Rui. Donald Wunsch II. Survey of clustering algorithm [J]. IEEE transaction on neural networks (S1045- 9227), 2005, 10 (3) :645-678.
  • 2Mac Queen J. Some methods for classification and analysis of multivariate observations [C] // LeCam L M, Neyman J, eds.Proceedings of 5-th Berkeley Symposium on Mathematical Sta- tistics and Probabilit. Berkeley: University of California Press, 1967:281-297.
  • 3Kim T,Bezbek J C. Optimal tests for the fixed points of the fuzzy C-means algorithms [J]. Pattern Recognition (S0031- 3203), 1988,31 : 651-663.
  • 4Guha S, Rastogi R, Shim K. CURE:An efficient clustering algo- rithm for large databases [C]//Proc. ACM SIGMOD Int. Conf. Management of Data. Seattle, Washington: ACM Press, 1998: 73-84.
  • 5Kaufmann L,Rousseeuw P J. Finding Groups in Data: An Intro- duction to Cluster Analysis [M]. New York: Lohn Wiley & Sons, 1990: 67-89.
  • 6Guha S, Rastogi R, Shim K. ROCK: A robust clustering algo- rithm for categorical attributes [J]. Informatic Systems (S1746- 0980) ,2000,25(5) :345-366.
  • 7Karypis G, Han E, Kumar V. Chameleon:Hierarchical cluster in gusing dynamic modeling [J]. IEEE Computer (S0018-9162), 1999,32(8):68-75.
  • 8Zhang T, Ramakrishnan R, Livny M. BIRCH: An efficient data clustering method for very large databases [C]//Proc. of the 15^th ACM SIGMOD Int'l Conf. on Management of Data. Mon- trel: ACM Press, 1996 : 103-114.
  • 9Ester M, Kriegel H P, Sander J, et al. A density- based algorithm for discovering clusters in large spatial databases with noise [C]// Simoudis E, Han J W, Fayyad U, eds. Proc of the 2nd Int'l Conf on Knowledge Discovery and Data Mining, KDD96. Menlo Park: AAAI Press, 1996 : 226-231.
  • 10Ankerst M, Breuing M, Kriegel H P, et al. OPTICS: Ordering points to identify the clustering structure [C] // Delis A, Falout- sos C, Ghandeharizadeh S, eds. Proc of the 1999 ACM SIGMOD Int'l Conf on Management of Data, 1999 ACM SIGMOD. New York: ACM Press, 1999 : 46-60.

共引文献13

同被引文献24

引证文献4

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部