期刊文献+

关于(N)模糊积分的Chebyshev型不等式

Chebyshev Type Inequalities for(N) Fuzzy Integral
下载PDF
导出
摘要 通过对被积函数添加适当条件,得到了(N)模糊积分意义下的Chebyshev型不等式,然后在次可加模糊测度条件下分别给出了被积函数取大和相加的相应不等式的形式. By adding some conditions to the integrable functions, Chebyshev type inequality for (N) fuzzy integral is obtained. Chebyshev type inequalities, which relate the subadditive fuzzy measure and the maximum or the sum of integtable functions, are also studied.
作者 岳田
出处 《湖南师范大学自然科学学报》 CAS 北大核心 2015年第1期86-89,共4页 Journal of Natural Science of Hunan Normal University
基金 中央高校基本科研业务费专项资金资助项目(2012LWB53)
关键词 Chebyshev型不等式 (N)模糊积分 次可加模糊测度 Chebyshev type inequalities (N) fuzzy integral subadditive fuzzy measure
  • 相关文献

参考文献12

  • 1SUGENO M. Theory of fuzzy integral and its application[ C ]. Tokyo: Tokyo Institute of Technology,.1974:1-30.
  • 2YANG Q J. Pan Integrals on fuzzy measure space [J]. Fuzzy Math, 1985,2(3) :107-114.
  • 3SONG X Q, PAN Z. Fuzzy algebra in triangular norm system [J]. Fuzzy Set Sys, 1998,93(3) :331-335.
  • 4宋晓秋.关于(T)Fuzzy积分的讨论[J].中国矿业大学学报,1992,21(1):97-104. 被引量:2
  • 5LIU W L, SONG X Q, ZHANG Q z. A new kind of triangular integrals based on T-norms and T-conorms [J]. Fuzzy Inf Eng, 2012,1(1) :13-27.
  • 6赵怀如.(N)模糊积分[J].数学评论与进展,1981,1(2):55-57.
  • 7WANG Z Y, KLIR G J. Generalized measure theory [ M ]. New York : Springer, 2008.
  • 8OZKAN U M, SARIKAYA M Z, YILDIRIM H. Extensions of certain integral inequalities on time scales [ J]. Appl Math Lett, 2008,21 (10) :993-1000.
  • 9FLORES-FRANULIC A, ROMAN-FLORES H. A Chebyshev type inequality for fuzzy integrals [ J]. Appl Math Comput, 2007, 190(2) :1178-1184.
  • 10ROMAN-FLORES H, FLORES-FRANULIC A, CHALCO-CANO Y. The fuzzy integral for monotone functions [ J]. Appl Math Comput, 2007,185 ( 1 ) :492-498.

二级参考文献1

共引文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部