期刊文献+

水在不同管径超疏水性微管内的流动特性 被引量:3

Flow characteristics of water in super-hydrophobic micro-tubes with different diameters
下载PDF
导出
摘要 在改性有机硅稀溶液中加入2%全氟辛基氟硅烷以及添加剂配制成超疏水液,采用滴定法在内径分别为0.447、0.728和0.873 mm的3种微铜管内壁实现微米级超疏水性涂层涂覆,其水滴表观接触角超过150°。建立微管内流动特性实验系统对超疏水性处理的减阻规律进行了实验研究,分别测量了雷诺数为100~3 000时去离子水流过处理前后微铜管时的内部摩擦阻力系数f。研究发现,内壁面的超疏水性处理显著降低了微管内的流动阻力,且该影响随微管内径的增加而增大,实验范围内流动阻力系数最大降幅达29.08%。超疏水涂层使得微管内的流动转捩现象出现滞后,且转捩Re随微管管径增加而略有增大。 We prepared super-hydrophobic solutionby adding 2% perfluorinatedoctyltriethoxysilane and additiveto modified-organosilicone dilute solution. We implemented micron order super-hydrophobic coating on inner-walls of three micro-tubes with diameters of 0.447 mm, 0. 728 mm and 0.873 mm to form super-hydrophobic micro-tubes. The contact angles of water on their inner surfacesare all larger than 150°. We further constructed aninnermicro-tube fluid characteristicexperimental system and exploredsuper-hydrophobic resistance reduction law. We measured frictional resistance coefficients f of de-ionized water flowing micro-tubes with super-hydrophobic layer and without super- hydrophobic layer for Re changing from 100 - 3000. Experimental results show flowing resistance in a micro-tube is significantly reduced through super-hydrophobic processing. Moreover, such resistance gradually reduces with the increase of the innerdiameter of a micro-tube. The maximum decreasing amplitude canreach 29.08%. Super-hydrophobic coating can make the transition of flow from laminar to turbulenceinobviously delayed and the transitional Re in micro-tubes increases with the increase of the diameter.
出处 《山东科学》 CAS 2015年第1期20-27,共8页 Shandong Science
基金 国家自然科学基金(51176105) 山东省自然科学基金(ZR2012EEQ015) 山东科技发展计划(2014GGX104008)
关键词 超疏水紫铜微管 接触角 摩擦阻力系数 雷诺数 流动转捩 copper micro-tube contact angle fictionalresistance coefficient Reynoids transition of flow
  • 相关文献

参考文献20

  • 1BAUDRY J, CHARIAIX E, TONCK A, et al. Experimental evidence for a large slip effect at a nonwetting fluid-solid interface [Jl- Langmuir, 2001, 17(17) : 5232 -5236.
  • 2CHOI C H, WESTIN KJ A, BREUERK S. Apparent slip flows in hydrophilic and hydrophobic microchannels [ J]. Physics of Fluids, 2003, 15 (1,0) : 2897 - 2902.
  • 3ZHU Y X, GRANICK S. Limits of the hydrodynamic no-slip boundary condition [ J]. Physical Review Letter, 2002, 88 (10) : 106102 - 106105.
  • 4NOURI Nowrouz Mohammad,SEKHAVAT Setareh,MOFIDI Alireza.DRAG REDUCTION IN A TURBULENT CHANNEL FLOW WITH HYDROPHOBIC WALL[J].Journal of Hydrodynamics,2012,24(3):458-466. 被引量:12
  • 5OU J, BLAIR P, ROTHSTEIN J P. Laminar drag reduction in microchannels using ultrahydrophobic surfaces [J]. Physics of Fluids, 2004, 16 (1L2) : 4635 -4643.
  • 6OU J, ROTHSTEIN J P. Direct velocity measurements of the flow past drag-reducing ultrahydrophobic surfaces[J]. Physics of Fluids, 2005, 17(113) :L1 - L10.
  • 7宋善鹏,于志家,刘兴华,秦福涛,方薪晖,孙相彧.超疏水表面微通道内水的传热特性[J].化工学报,2008,59(10):2465-2469. 被引量:15
  • 8LYU S, NGUYEND C, KIM D, et al. Experimental drag reduction study of super-hydrophobic surface with dual-scale structures [J]. Applied Surface Science, 2013, 286:206-211.
  • 9郝秀清,王莉,丁玉成,叶广辉,何仲赟,卢秉恒.超疏水表面的减阻研究[J].润滑与密封,2009,34(9):25-28. 被引量:16
  • 10郝鹏飞,汪幸愉,姚朝晖,朱克勤,何枫.疏水微槽道内层流减阻的实验研究[J].实验流体力学,2009,23(3):7-11. 被引量:11

二级参考文献103

共引文献71

同被引文献28

引证文献3

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部