期刊文献+

G2B公共服务平台个性化服务推荐研究

Personalized services recommendation research on G2B public service platform
下载PDF
导出
摘要 我国政府管理模式正在从传统的行政管理模式向公共服务模式转变,电子政务个性化推荐是提升政府公共服务水平的有效手段。在国内外电子政务个性化推荐研究基础上,综合采用Apriori、FCC和协同过滤等多种推荐算法,通过用户数据挖掘,用户聚类,个性化推荐三个过程,有效缓解了数据矩阵的高维性和数据极端稀疏性,提高推荐精度,以"××中小企业网"为例,验证了该个性化推荐算法的实用性和有效性。 Chinese government management mode is changing irom the traditional administrative management mode to public service mode, and personalized recommendation of e-government is the effective measures to enhance the level of government public service. In this paper,based on personalized recommendation of e-government research, many kinds of recommendation algorithm, such as Apriori, FCC and collaborative filtering recommendation, are combined to reduce effectively the high dimensional and the extreme of data matrix, and to improve the recommendation accuracy, with three processes of data mining,clustering and user personalization recommendation. " ×× small and medium-sized enterprise network" is used to verify the practicability and validity of the personalized recommendation algorithm.
出处 《信息技术》 2015年第1期69-72,76,共5页 Information Technology
基金 国家自然科学基金(71271104 70971056 71101065) 教育部人文社会科学研究青年基金项目(10YJC630242) 江苏省教育厅高校哲学社会科学项目(2012SJD630017)
关键词 电子政务 公共服务 个性化推荐 e-government public service personalized recommendation
  • 相关文献

参考文献13

  • 1刘庆鹏,陈明锐.优化稀疏数据集提高协同过滤推荐系统质量的方法[J].计算机应用,2012,32(4):1082-1085. 被引量:17
  • 2李聪,梁昌勇.基于n序访问解析逻辑的协同过滤冷启动消除方法[J].系统工程理论与实践,2012,32(7):1537-1545. 被引量:16
  • 3Vozalis M,Margaritis K G.Using SVD and demographic data for the enhancement of generalized collaborative filtering[J].Information Sciences,2007,177(15):3017-3037.
  • 4Takács G,Pilászy I,Németh B,et al.Scalable collaborative filtering approaches for large recommender systems[J].The Journal of Machine Learning Research,2009(10):623-656.
  • 5Dell'Amico M,Capra L.Dependable filtering:Philosophy and realizations[J].ACM Transactions on Information Systems(TOIS),2010,29(1):5.
  • 6Moon T,Chu W,Li L,et al.An Online Learning Framework for Refining Recency Search Results with User Click Feedback[J].ACM Transactions on Information Systems(TOIS),2012,30(4):20.
  • 7梁昌勇,李聪,杨善林.一种基于Rough集理论的最近邻协同过滤算法[J].情报学报,2009,28(5):712-719. 被引量:8
  • 8Mei T,Yang B,Hua X-S,et al.Contextual video recommendation by multimodal relevance and user feedback[J].ACM Transactions on Information Systems(TOIS),2011,29(2):10.
  • 9Kim H-N,Ha I,Lee K-S,et al.Collaborative user modeling for enhanced content filtering in recommender systems[J].Decision Support Systems,2011,51(4):772-781.
  • 10Vallet D,Hopfgartner F,Jose J M,et al.Effects of usage-based feedback on video retrieval:a simulation-based study[J].ACM Transactions on Information Systems(TOIS),2011,29(2):11.

二级参考文献37

  • 1业宁,李威,梁作鹏,董逸生.一种Web用户行为聚类算法[J].小型微型计算机系统,2004,25(7):1364-1367. 被引量:20
  • 2吴丽花,刘鲁.个性化推荐系统用户建模技术综述[J].情报学报,2006,25(1):55-62. 被引量:104
  • 3崔亚洲,段刚.基于Web日志和商品分类的协同过滤推荐系统[J].电子科技大学学报(社科版),2006,8(3):39-42. 被引量:5
  • 4Lin WY,Alvarez SA,Ruiz C.Collaborative recommendation via adaptive association rule mining.2000.
  • 5Haubl G,TriPs V.Consumer Decision Making in On line Shopping Environments:The Effects of Interactive Decision Aids Marketing Science,2000.
  • 6邓爱林 朱扬勇 施伯乐.基于项目评分预测的协同过滤推荐算法[J].计算机应用研究,2008,:1622-1623.
  • 7Jiawei Han,Micheline K.Data Mining Concepts and Techniques,Second Edition.北京:机械工业出版社,2006:146-173.
  • 8Sarwar B,Karypis G,Konstan J,Riedl J.Item-Based collaborative filtering recommendation algorithms.Proc.of the 10th International World Wide Web Conference.2001.
  • 9BORCHERS A,HERLOCKER J,KONSTAN J,et al.Ganging upon information overload[J].Computer,1998,31(4):106-108.
  • 10SARWAR B,KARYPIS G,KONSTAN J,et al.Item-based collab-orative filtering recommendation algorithms[C]//Proceedings of the10th International Conference on World Wide Web.New York:ACM Press,2001:285-295.

共引文献77

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部