期刊文献+

一种动态分群的自适应粒子群优化算法 被引量:1

An adaptive particle swarm optimization algorithm with dynamic sub-swarms
下载PDF
导出
摘要 粒子群优化算法是模拟鸟类觅食行为思想的随机搜索算法,主要是通过迭代寻找最优解。将粒子随机初始化改进为固定初始化,并将动态分群思想引入粒子群优化算法将整个种群划分为三个子群,根据不同群中粒子的情况自适应地选择惯性权重,以此提高粒子的搜索能力。仿真实验结果表明,该方法大大提高了搜索过程中粒子的多样性,避免粒子陷入局部最优,提高了求解的速度和精度。 Particle swarm optimization algorithm is a random search algorithm simulating birds' foraging behavior and thought, which mainly searches the optimal solution by iteration. This paper uses particle fixed initialization instead of particle random initialization and introduces dynamic sub-swarms theory into particle swarm optimization algorithm to divide the whole population into three subgroups in which inertia weight is chosen adaptively according to particle situation of different groups in order to improve the search ability of particle. The simulation experimental results show that the method greatly increases the diversity of particles in the process, keeps particle from trapping in local optimum and improve the solution speed and precision.
作者 陈炜
出处 《信息技术》 2015年第1期101-104,共4页 Information Technology
关键词 粒子群算法 固定初始化 动态分群 自适应寻优 particle swarm optimization algorithm fixed initialization dynamic sub-swarms adaptiveoptimization
  • 相关文献

参考文献5

  • 1Kennedy,R.C.Eberhart.Particle swarm optimization[C].Proc.IEEE International Conference on Neural Networks IV.Australia,1995:1942-1948.
  • 2彭喜元,彭宇,戴毓丰.群智能理论及应用[J].电子学报,2003,31(z1):1982-1988. 被引量:79
  • 3Clere M,Kennedy J.The particle swarm-explosion,stability,and convergence in a multidimensional complex space[J].IEEE Transactions on Evolutionary Computation,2002(2):65-73.
  • 4Shi Y,Eberhart R C.A modified particle swarm optimizer.Proceedings of IEEE International Conference on Evolutionary Computation(CEC 1998)[C].Piscataway,NJ,1998:69-73.
  • 5Shi Y,Eberhart R C.Empirical study of particle swarm optimization[C].Proceedings of the World Multiconference on Systemics,Cybernetics and Informatics,Orlando,FL,2000:1945-1950.

二级参考文献53

  • 1[11]Shi Y, Eberhart R. Fuzzy adaptive particle swarm optimization [ A ].Proc. Congress on Evolutionary Computation[ C ]. Seonl, Korea. Piscataway, NJ: IEEE Service Center,27 - 30 May 2001.1.101 - 106.
  • 2[12]Jacques Riget,Jakob S Vesterstrom. A diversity-guided particle swarm optimization-the ARPSO [ DB/OL ]. http://citeseer. nj. nec. com/riget02diversityguided. html.
  • 3[13]Lovbjerg M, Krink T. Extending particle swarms with self-organized criticality[ A ]. Proceedings of the Fourth Congress on evolutionary computation (CEC-2002) [ C ]. Honolulu, HI USA, 2002.2. 1588 -1593.
  • 4[14]Al-kazemi B, Mohan C K. Multi-phase generalization of the particle swarm optimization algorithm[A]. Proceedings of the 2002 Congress on Evolutionary Computation[ C ]. Honolulu, HI USA, 12 - 17 May 2002.1.489 - 494.
  • 5[15]Krink T, Vesterstrom J S, Riget J. Particle swarm optimisation with spatial particle extension[ A]. Proceedings of the Fourth Congress on Evolutionary Computation (CEC-2002) [ C ]. Honolulu, HI USA, 2002.2.1474- 1479.
  • 6[16]Kennedy J, Mendes R. Population structure and particle swarm performance[ A]. Proceedings of the IEEE Congress on Evolutionary Computation ( CEC 2002 ) [ C ]. Honolulu, HI USA, 12 - 17 May 2002.2.1671- 1676.
  • 7[17]M Lvbjerg, T K Rasmussen, T Krink. Hybrid particle swarm optimiser with breeding and subpopulations[ A ]. Proceedings of the Genetic and Evolutionary Computation Conference [ C ]. San Francisco, California,2001.469 - 476.
  • 8[18]Xiaohui Hu, Eberhart,R C.Adaptive particle swarm optimization:detection and response to dynamic systems[ A ]. Proceedings of the 2002 Congress on Evolutionary Computation[ C ]. Honolulu, HI USA, 2002.2.1666 - 1670.
  • 9[19]M Dorigo, L M Gambardella. Ant colony system: a cooperative learning approach to the traveling salesman problem[J]. IEEE Transactions on Evolutionary Computation, 1997,1(1 ) :53 - 66.
  • 10[20]T Stutzle, H H Hoos. MAX MIN Ant system[ J]. Journal of Future Generation Computer Systems,2000,16:889 - 914.

共引文献78

同被引文献14

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部