期刊文献+

基于连续批信息的制导武器鉴定试验方案及风险分析 被引量:2

Evaluation Test Scheme and Risk Analysis on the Guidance Weapon Based on Continuous Batch Information
下载PDF
导出
摘要 为了科学制定制导武器的可靠性鉴定试验方案,在论证基于连续批信息的批抽样方案的Bayes风险分析方法的基础上,重点对比分析了利用连续批验收试验数据与利用当前批的地面试验数据确定超参数的方法,并以连续批的验收试验数据为先验信息,制定了某制导武器鉴定试验的抽样方案,结果表明基于连续批先验信息的Bayes方法在确定可靠性批验收准则和双方风险方面是可行且较优的. In order to make a scientific plan of reliability evaluation test scheme on guided weapon,the Bayes risk analysis methods was approved based on continuous batch information sampling plan.The method of using continuous batch acceptance test data and using the current batch of ground test data to determine super parameters was comparatively analyzed as a focus.A sampling scheme for guided weap-on evaluation test was developed with the acceptance test data of continuous batch as a priori informa-tion.This paper concluded that the proposed was feasible and optimum on determining reliability ap-proved acceptance criteria and risks of both sides.
出处 《测试技术学报》 2015年第1期54-57,共4页 Journal of Test and Measurement Technology
基金 国家自然科学基金资助项目(60971092)
关键词 制导武器 连续批信息 超参数 风险分析 guidance weapon continuous batch information hyper parameters risk analysis
  • 相关文献

参考文献9

  • 1Erto P. New practical Bayes estimators for the 2-parameter Weibull distribution[J]. Microelectronices Reliability,1996, 36(5) : 595-603.
  • 2Virk S M, Muhammad A, Martinez-Enriquze A M. Fault Prediction Using Artifical Neural Network And Fuzzy Logic [C]. The 7th Mexican International Conference On Artifical Intelligence, 2008 (1) : 149-154.
  • 3Ponci F, Cristaldi L, Failer M, et al. Innovative Approach To Early Fault Detection For Induction Motors[C]. IEEE International Symposium On Diagnostics For Electric Machine, Power Electronics And Drivers, 2007(6) : 283-288.
  • 4Duong N Q K, "Vincent E, Gribunva. Spatial Covariance Models For Underdetermined Reverberant Audio Source Sep- aration[C]. New York: In Proc WASPAA, 2009: 129-132.
  • 5Leonicio D. Lopez And Michael G. Pecht. Modeling Of IC socket contacts reisitance for reliability and health monito- ring[J]. IEEE Transactions On Relibility, 2009(2) : 264-270.
  • 6Peng Z K, Jackson M R, Rongong J A, et al. On the energy leakage of discrete wavelet ransform[J]. Mechanical Sys- tem and Signal Processing, 2009, 23(2): 330-343.
  • 7Sun W, Palazoglu A, Romagnoli J A. Detecting abnormal process trends by wavelet-domain hidden markov models [J]. Journal of the American Institute of Chemical Engineers, 2003, 49(1) : 140-150.
  • 8Miao Q, Makis V. Condition monitoring and classification of rotating machinery using wavelets and hidden Markov models[J]. Mechanical Systems and Signal Processing, 2007, 21: 840-855.
  • 9Kallergi M, Carney G, Gaviria J. Evaluating the performance of detection algorithms in digital mammography[J]. Medical Physics 2009, 26(2): 267-275.

同被引文献18

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部