期刊文献+

回归的能源有效网络大数据流汇聚算法研究 被引量:1

Regression Based Power-efficient Data Streams Aggregation Algorithm
下载PDF
导出
摘要 为了降低传感器网络数据流汇聚时的能源消耗,提出了一种基于回归的能源有效数据流汇聚算法;首先,将传感器节点分为活跃节点和能源有效节点;然后,以活跃节点为中心点将所有节点进行聚类,并应用回归方法通过活跃节点的数据流对能源有效节点的数据进行预测;接下来,通过节点预测值的累积误差不断修正活跃节点集;最后,应用活跃节点的数据流信息对能源有效节点的数据进行预测;实验表明,提出的算法与其它相关算法相比具有更好的预测准确性。 In sensor networks,power consumption is a critical factor in aggregating data streams.In order to decrease the power consumption while aggregating data streams in sensor networks,this paper proposed a regression based power-efficient data streams aggregation algorithm.Firstly,we classified the sensor nodes into active nodes and power-efficient node.Secondly,we clustered all nodes using the active nodes as the center nodes,and predicted the data of power-efficient nodes using the active nodes with regression method.Thirdly,we modified the active node set with the cumulative error of the predicted data.Finally,we predicted the data of power-efficient nodes with the active nodes.The experiments show that,the proposed method is more accurate than related works while predicting.
作者 杨菲 肖满生
出处 《计算机测量与控制》 2015年第2期508-511,515,共5页 Computer Measurement &Control
关键词 大数据 数据流 能源有效的 聚类 数据汇聚 回归算法 data streams power-efficient clustering data aggregation regression algorithm
  • 相关文献

参考文献16

  • 1饶云华,代莉,赵存成,曹阳.基于无线传感器网络的环境监测系统[J].武汉大学学报(理学版),2006,52(3):345-348. 被引量:41
  • 2Anagnostopoulos, Adams N M, Hand D J. Streaming eovariance selection with applications to adaptive querying in sensor networks [J]. Computer Journal, 2010, 53 (9): 1401-1414.
  • 3Akyildiz I F, Su W, Sankarasubramaniam Y, et al. Wireless sensor networks: a survey [J]. Computer networks, 2002, 38 (4) : 393 - 422.
  • 4任丰原,黄海宁,林闯.无线传感器网络[J].软件学报,2003,14(7):1282-1291. 被引量:1709
  • 5Deligiannakis A, Kotidis Y. Data reduction techniques in sensor networks [J]. IEEE Data Engineering Bulletin, 2005, 28 (1): 19 -25.
  • 6Papadimitriou S, Sun J, Faloutsos C. Dimensionality reduetion and forecasting of time--series data streams [A]. Data Streams: Mod- els and Algorithms [C] . Ed. Charu Aggarwal, Springer, 2007:261 - 288.
  • 7Sakurai Y, Papadimitriou S, Faloutsos C. BRAID: Stream mining through group lag correlations [A]. ACM SIGMOD Conference [C] . 2005: 599-610.
  • 8Aggarwal C C, Bar--Noy A, Shamoun S. On sensor selection in linked information networks [A]. IEEE DCOSS Conference [C].2011: 110-117.
  • 9Golovin D, Faulkner M, Krause A. Online distributed sensor selec- tion [A]. IPSNConference [C]. 2010:220-231.
  • 10Krause Am Guestrin C. Near--optimal observation selection using submodular functions [A]. AAAI Conference [C]. 2007:1650 -1654.

二级参考文献42

  • 1崔莉,鞠海玲,苗勇,李天璞,刘巍,赵泽.无线传感器网络研究进展[J].计算机研究与发展,2005,42(1):163-174. 被引量:730
  • 2石田耕三.环境监测技术的现状及发展趋势[J].中国环境监测,2005,21(1):4-7. 被引量:31
  • 3ALERT. http://www.altersystem.org.
  • 4Bonnet P, Gehrke J, Seshadri P. Querying the physical world. IEEE Personal Communication, 2000,7(5):10-15.
  • 5Noury N, Herve T, Rialle V, Virone G, Mercier E. Monitoring behavior in home using a smart fall sensor. In: Proceedings of the IEEE-EMBS Special Topic Conference on Microtechnologies in Medicine and Biology. Lyon: IEEE Computer Society, 2000.607~610.
  • 6Sensor Webs. http://sensorwebs.jpl.nasa.gov/.
  • 7Shill E, Cho S, Ickes N, Min R, Sinha A, Wang A, Chandrakasan A. Physical layer driven protocol and algorithm design for energy-efficient wireless sensor networks. In: Proceedings of the ACM MobiCom 2001. Rome: ACM Press, 2001. 272-286.
  • 8Akyildiz I.F, Su W, Sankarasubramaniam Y, Cayirci E. Wireless sensor network: A survey. Computer Networks, 2002,38(4):393~422.
  • 9Asada G, Dong M, Lin TS, Newberg F, Pottle .G, Kaiser WJ, Marcy HO. Wireless integrated network sensors (WINS) for tactical information systems. In: Proceedings of the 1998 European Solid State Circuits Conference. New York: ACM Press, 1998. 15-20.
  • 10Sohrabi K, Pottie GJ. Performance of a novel self-organization protocol for wireless Ad hoc sensor networks. In: Proceedings of the IEEE 50th Vehicular Technology Conference. Amsterdam, 1999. 1222~1226.

共引文献1746

同被引文献2

引证文献1

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部