期刊文献+

基于隐含狄利克雷分配的微博推荐模型研究 被引量:12

Micro-blog Recommendation Model Based on the Latent Dirichlet Allocation
原文传递
导出
摘要 微博作为一种新的社交网络,其影响力日益增大,逐渐成为用户获取第一消息的手段。为了增进微博服务,为用户提供兴趣信息,满足用户需求,本文综合考虑微博文本的特殊性,对原有的隐含狄利克雷分配(LDA)模型进行改进,提出基于User-topic的微博推荐模型。该模型在LDA的基础上添加了用户信息,从而得到主题生成用户的概率。通过微博文本-主题-词汇-用户之间的关系为用户提供多角度微博推荐,包括主题推荐、微博内容推荐和用户推荐。 Micro-blog as a new social network has gradually become the main mean of getting the latestnews for users with its high influence. In order to improve the quality of micro-blog's service,and provideinteresting information for users, this paper considered the particularity of the micro-blog's texts, and im-proved the original LDA model based on User-topic micro-blog recommend model. This model has addedextra user information on the basis of LDA, so as to obtain the user's probability for every theme.As a re-sult, we can provide users with multi-angle micro-blog recommendation by analyzing the relationship be-tween the users and text-theme–vocabulary. The content of recommendation includes theme recommen-dation, micro-blog's text recommendation, and users themselves recommendation.
出处 《情报科学》 CSSCI 北大核心 2015年第2期3-8,共6页 Information Science
基金 国家自然科学基金项目(71273194)
关键词 LDA User-topic 微博推荐 LDA user-topic microblog recommendation
  • 相关文献

参考文献10

  • 1中国互联网络信息中心.第29次中国互联网络发展状况统计报告[EB/OL].(2012-01-16).http://Avww.cnnie.net.cn/dtygg/dtgg/201201/t20120116_23667.html.
  • 2Ramage D, Dumains S, Liebling D. Characterizing Mi- croblogs with Topic Models[C]//Proc of Int AAAI Conf on Weblogs and Social Media, Menlo Park,CA:AAAI, 2010:130-137.
  • 3王晟,王子琪,张铭.个性化微博推荐算法[EB/OL].中国科技论文在线,http://www.paper.edu.cn/releasepa-per,content,201209-132,2012-09-13.
  • 4Hannon J,McCarthy K, Smyth B. Finding Useful Users on Twitter:Twittomender the Followee Recommender [C]//Proceeding of the 33rd European Conference on Information Retrieval(ECIR 2011).Berlin,Heidelberg: Springer-Verlag,2011:784-787.
  • 5Hannon J, Bennett M, Smyth B. Recommmending Twit- ter Users to Follow Using Content and Collaborative Filtering Approaches[C]//Proceedings of the 4th ACM Conference on Recommender System.New York,NY, USA:ACM, 2010:199-206.
  • 6Zangerle E, Gassier W, Specht G. Using Tag Recom- mendations to Homogenize Folksonomies in Microb- lolgging Environments[C]//Proceedings of the 3rd In- ternational Conference on Social Informatics(SocInfo 2011),2011:113-126.
  • 7Phelan O, McCarthy K, Smyth B. Using Twitter to Recom- mend Real-time Topic News[C]//Proceedings of the 3rd ACM Conference on Recommender System(RecSys 09), New York,NY,USA:ACM,2009:385-388.
  • 8Phelan O, McCarthy K, Bennett M, etal. Terms of A Feature-Content-based News Recommendation and Discovery Using Twitter[C]//Proceeding of the 33rd European Conference on Advances in Information Re- trieval(ECIR' 11).Berlin, Heidelberg:Springer-Verlag, 2011:448-459.
  • 9D.Blei, A.Ng, M.Jordan. Latent Dirichlet Allocation[J]. SIGIR, 1999, (6):50-57.
  • 10余传明,张小青,陈雷.基于LDA模型的评论热点挖掘:原理与实现[J].情报理论与实践,2010,33(5):103-106. 被引量:21

二级参考文献14

  • 1YE Hui-min,CHENG Wei,DAI Guan-zhong.Design and Implementation of On-Line Hot Topic Discovery Model[J].Wuhan University Journal of Natural Sciences,2006,11(1):21-26. 被引量:14
  • 2ALLAN J, CARBONELL J, DODDINGTON G, et al. Topic detection and tracking pilot study : final report [ C ] // Proceedings of the DARPA Broadcast News Transcription and Understanding Workshop. Virginia: Lansdowne, 1998: 194-218.
  • 3LEEK T, SCHWARTZ R M, SISTA S. Probabilistic approaches to topic detection and tracking [ C ] //Topic Detection and Tracking: Event-based Information Organization. Kluwer Academic : Massachusetts, 2002 : 67-83.
  • 4CHEN K Y, LUESUKPRASERT L, CHOU S C T. Hot topic extraction based on timeline analysis and multidimensional sentence modeling [ J ]. IEEE Transactions on Knowledge Data Engineering, 2007 (19) : 1016-1025.
  • 5罗亚平,王枞,周延泉.基于关注度的热点话题发现模型[M]//萧国政,何炎祥,孙茂松.中文计算技术与语言问题研究.北京:电子工业出版社,2007:402-408.
  • 6OKA M, ABE H, KATO K. Extracting topics from Weblogs through frequency segments [ C ] // Proceedings of the WWW2006 Workshop on Web Intelligence, 2006: 22-26.
  • 7BLEI D M, NG A Y, JORDAN M I. Latent difichlet allocation[J]. Journal of Machine Learning Research, 2003 (3).
  • 8GRIFFITHS T L, STEYVERS M. Finding scientific topics [ C ] // Proceedings of the National Academy of Science, 2004.
  • 9STUART G, DONALD G. Stochastic relaxation, gibbs distributions, and the bayesian restoration of images [ J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1984 (6) : 721-741.
  • 10CAO Juan, XIA Tian, LI Jintao, et al. A density-based method for adaptive LDA model selection [ J]. Neurocomputing, 2009 (72) : 1775-1781.

共引文献58

同被引文献109

  • 1杨晶,杨长春,丁虹.一种改进的新浪微博好友推荐算法[J].常州大学学报(自然科学版),2013,25(3):66-70. 被引量:3
  • 2苏金树,张博锋,徐昕.基于机器学习的文本分类技术研究进展[J].软件学报,2006,17(9):1848-1859. 被引量:384
  • 3李慧,张舒,顾天竺,陈晓红,吴颜.一种新颖的CRE用户评论信息抽取技术[J].计算机应用,2006,26(10):2509-2512. 被引量:2
  • 4李涛,王建东,叶飞跃,冯新宇,张有东.一种基于用户聚类的协同过滤推荐算法[J].系统工程与电子技术,2007,29(7):1178-1182. 被引量:70
  • 5GodesD, Mayzlin D. Using online conversations to studyword- of- mouthconmamicatim [J]. Marketing Science. 2004, 23 (4): 545 -560.
  • 6Pens- Porrata A, Berlonga- Llavori R, Ruiz- Shulcloper J. Topic discovery based on textmining techniques [ J ]. Information Pting&Managemen, t 2007, 43 (3): 752-768.
  • 7David M.Blei, Andrew Y.Ng, and Michael I.Jordon. Latent Dirich- let allocation [ J ]. Journal of Machine Learning Research, 2003, (3) : 993 - 1022.
  • 8Mudambi SM, Schuff D. What makes a helpful online review? A study of customer reviews on mnazon, corn [J]. MIS Quarterly, 2010, 34 (1): 185-200.
  • 9S.Zhou, Q.Chen, X.Wang. Active deep learning method for semi - supervised sentiment classification [ J]. Neurocomputing, 2013, 120: 536-546.
  • 10中国互联网信息中心.第35次中国互联网发展状况统计报告[EB/OLl.[2015-02-03].http://WWW.cnnic.net.cn.

引证文献12

二级引证文献89

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部